首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Combining experiments and DFT calculations, we show that tricoordinate Al(III) Lewis acid sites, which are present as metastable species exclusively on the major (110) termination of γ- and δ-Al(2)O(3) particles, correspond to the "defect" sites, which are held responsible for the unique properties of "activated" (thermally pretreated) alumina. These "defects" are, in fact, largely responsible for the adsorption of N(2) and the splitting of CH(4) and H(2). In contrast, five-coordinate Al surface sites of the minor (100) termination cannot account for the observed reactivity. The Al(III) sites, which are formed upon partial dehydroxylation of the surface (the optimal pretreatment temperature being 700 °C for all probes), can coordinate N(2) selectively. In combination with specific O atoms, they form extremely reactive Al,O Lewis acid-base pairs that trigger the low-temperature heterolytic splitting of CH(4) and H(2) to yield Al-CH(3) and Al-H species, respectively. H(2) is found overall more reactive than CH(4) because of its higher acidity, hence it also reacts on four-coordinate sites of the (110) termination. Water has the dual role of stabilizing the (110) termination and modifying (often increasing) both the Lewis acidity of the aluminum and the basicity of nearby oxygens, hence the high reactivity of partially dehyxdroxylated alumina surfaces. In addition, we demonstrate that the presence of water enhances the acidity of certain four-coordinate Al atoms, which leads to strong coordination of the CO molecule with a spectroscopic signature similar to that on Al(III) sites, thus showing the limits of this widely used probe for the acidity of oxides. Overall, the dual role of water translates into optimal water coverage, and this probably explains why in many catalyst preparations, optimal pretreatment temperatures are typically observed in the "activation" step of alumina.  相似文献   

2.
Among the most frequent protein binding sites served by Mg(II), we identify those which have higher affinity towards Al(III). We also estimate the free energies of metal exchange for all these binding sites taking into account solvent effects explicitly. The obtained results show that thermodynamically favored Mg(II)/Al(III) exchange reactions take place at a number of these metal binding sites, which could possibly be related to some dysfunctions of Mg(II)-dependent biological processes. Additionally, they shed light on the molecular basis of the toxicity of Al(III) in living organisms.  相似文献   

3.
We report on an amperometric assay for Al(III) ions that is based on the inhibition of the enzyme α-chymotrypsin. Screen-printed carbon electrodes modified with gold nanoparticles were used as solid supports for the immobilization of the enzyme. The amperometric response of the synthetic enzyme substrate substrate N-benzoyl-L-tyrosine ethyl ester is affected by Al(III) ions, and this leads to a decrease in the amperometric oxidation current. The assay has a detection limit of 3.3?μM of Al(III). The repeatability and reproducibility of the method are 6.9% (n?=?3) and 6.4% (n?=?5), respectively. Main interferents include Mo(VI), W(VI) and Fe(III) ions. The method was successfully applied to the determination of Al(III) in tap water.
Figure
An electrochemical biosensor for Al (III) was developed based on screen-printed carbon electrodes modified with gold nanoparticles and the enzyme α- chymotrypsin. The biosensor had high sensitivity, high selectivity, ease of use and construction for Al (III) analysis.  相似文献   

4.
A novel method for recognition and indirect determination of Al(III) by using biological molecules has been established based on the quenching of RRS intensity. In the weak acidic medium, the reaction of ethyl violet (EV) and DNA would result in great enhancement of RRS intensity. However, the presence of Al(III) would lead to the decrease of the RRS intensity owing to the competition coordination of Al with DNA. The decreased intensity of RRS is directly proportional to the concentration of Al(III) in the range of (0.1-2.5)x10(-6) and (0.30-4.5)x10(-5)M, respectively. The method has high sensitivity and its detection limit (3sigma) is 3.6x10(-8)M. The characteristics of RRS spectra of the system, the optimum conditions of the reaction, and the reaction mechanism have been investigated. The method can recognize Al(III) selectively owing to its strong binding to the phosphate backbone of DNA, and has been applied to the determination of Al(III) concentration in synthetic biological samples with satisfactory results. Therefore, the proposed method is promising as an effective means for selective recognition and sensitive determination in situ of Al(III). Furthermore, this study would contribute to further understanding of the biological significance of Al neurotoxicity.  相似文献   

5.
The interactions of dihydronicotinamide adenine dinucleotide (NADH) with Al(III) in near neutral aqueous solutions were studied by means of multinuclear (31P, 27Al, 1H and 13C)-NMR and fluorescence spectra techniques. The results suggested that Al(III) interacts with NADH by occupying the binding sites of pyrophosphate oxygen atoms and locks the adenine moiety of coenzyme in an anti folded conformation Meanwhile, the weak attractive interactions ('association') may occur between Al(III) and the hydroxyl groups of ribose rings through the intramolecular hydrogen bonding. Furthermore, at biologically relevant pH and concentrations of Al(III) and NADH (pH 6.5, C(Al)=10(-6)-10(-5) M), Al(III) could increase the amount of folded forms of NADH, which will result in reducing the coenzyme NADH activity in hollow-dehydrogenases reaction systems. However, in the presence of possible competing organic acids such as citrate, oxalate and tartate, could detoxify these Al(III) toxic effect.  相似文献   

6.
7.
In this paper, differential-pulse voltammetry (DPV) was applied to study the effects of aluminum (Al(III)) on the lactate dehydrogenase (LDH) activity, and νmax in the enzyme promoting catalytic reaction of “” by monitoring DPV reduction current of NAD+. The changes of Al's influence on the LDH activities caused by the concentration of LDH, pH, temperature as well as Al speciation including Al hydroxide (Al-OH), Al fluoride (Al-F) and organically complexing Al (Al-Org) compounds have been investigated. The results showed that the effects of Al on the LDH activity exhibited two kinds of behaviors under different conditions, i.e. inhibitory effects or slightly increased LDH activity at low concentrations and inhibited at high concentrations. To analyze the values of and νmax of LDH reaction system in the absence and presence of 0.04 mmol/L Al(III), it was found that the types of the inhibition of Al(III) varied with experimental conditions. The comparisons of effects of Al(III) with Pb(II), Cd(II) and Cr(III) on the LDH activities were also inspected.  相似文献   

8.
Sitting, coordination, and properties of Cu(I) cations in zeolite faujasite are investigated using a combined quantum mechanics-interatomic potential function method. The coordination of Cu(I) ions depends on their location within the zeolite lattice. Cu(I) located inside the hexagonal prisms (site I') and in the plane of six-membered aluminosilicate rings on the walls of sodalite units (site II) is threefold coordinated, whereas Cu(I) located in the supercages (site III) is twofold coordinated. In agreement with available experimental data Cu(I) appears to be more strongly bound in sites I' and II than in site III. The binding energy of site II Cu(I) ions increases with the number of Al atoms, but only closest Al atoms have a substantial influence. The CO molecule binds more strongly onto sites with weaker bound cations and lower coordination. We assign the two CO stretching IR bands observed for Cu(I)-Y zeolites to sites II with one Al (2157-2161 cm(-1)) and two Al atoms (2140-2148 cm(-1)) in the six-membered aluminosilicate ring. For Cu(I)-X we tentatively assign the high frequency band to site III (2156-2168 cm(-1)) and the low-frequency band to site II with three Al atoms in the six-membered ring (2136-2138 cm(-1)).  相似文献   

9.
The structural speciation aspects, including the binding sites, species, complexation abilities and effects of the oxidized glutathione (GSSG) with aluminum(III) in aqueous solutions, have been studied by means of many analytical techniques: pH-potentiometry (25 degrees C, 0.1 M KCl and 37 degrees C, 0.15 M NaCl medium) was used to characterize the stoichiometry and stability of the species formed in the interactions of the Al(III) ion and the peptide GSSG, while multinuclear ((1)H, (13)C, (27)Al) nuclear magnetic resonance (NMR) and electrospray mass spectroscopy (ESI-MS) were applied to characterize the binding sites and species of the metal ion in the complexes. Two-dimensional ((1)H, (1)H-NOESY) was also employed to reveal the difference in the conformational behavior of the peptide and its complexes. The following results were obtained: (1) Aluminum(III) can coordinate with the important biomolecule GSSG through the following binding sites: glycyl and glutamyl carboxyl groups to form various mononuclear 1:1 (AlLH(4), AlLH(3), AlLH(2), AlLH, AlL, AlLH(-1), AlLH(-2)) and several binuclear 2:1 (Al(2)LH(4), Al(2)LH(2), Al(2)L) species (where H(6)L(2+) denotes the totally protonated oxidized glutathione) in acidic aqueous solutions. (2) It indicates that the COO(-) groups at low level of preorganization in such small peptide are not sufficient to keep the Al(III) ion in solution and to prevent the precipitation of Al(OH)(3) in the physiological pH range. (3) It also suggests that the occurrence of an Al-linked complexation, the conformation of the peptide GSSG in aqueous solutions appeared to change a little, relative to the initial structure.  相似文献   

10.
Aluminum(III) can be absorbed when it is appropriately complexed. There are several plasma components which can bind weakly Al(III). Many proteins bind Al(III) in solution quite strongly. Carbohydrates bearing an abundance of electronegative functional groups can interact with metal cations. In solution, d-ribose exists as a mixture at equilibrium of many isomers and only a few of them bear a ‘complexing’ sequence of the hydroxyl groups. The presence of d-ribose in an Al(III) solution experiences a decrease of its Brönsted-acid sites. The lowering of the Brönsted acidity of an Al(III)-d-ribose mixture suggests the existence of attractive interactions (‘association’) between Al(III) ion and the complexing sequence of the hydroxyls of d-ribose. There is enhancement in the stability of the interaction complexes between Al(III) and d-ribose through strong intramolecular hydrogen bonding, which offers the possibility to investigate the kinetics of the subsequent proton release reactions. On the basis of the kinetic results, it may be concluded that proton release reactions, which are associated with the complexation reactions, are associatively activated. The complexes (Al(H2O)6−n(d-ribosenH)(3−n)+) resulting from the various ‘complexing’ forms of d-ribose are formed at mainly acidic pH. As the pH increases, the values of the activation enthalpy, ΔH, are changing, because of the formation of mixed hydroxo-complexes (Al(H2O)6−nm(OH)m(d-ribosenH)(3−nm)+); finally, OH displaces d-ribose from the coordination sphere of Al(III) in a rather slow process, i.e. with high values of ΔH; the activation enthalpy values, ΔH, decrease with the progression of the displacement, becoming finally very small due to the formation of a precipitate. Chelate coordination of d-ribose with some divalent and trivalent metal ions has been also reported.  相似文献   

11.
Efforts to delineate the interactions of Al(III), a known metallotoxin, with low molecular mass physiological substrates involved in cellular processes led to the investigation of the structural speciation of the binary Al(III)–quinic acid system. Reaction of Al(NO3)3 · 9H2O with d-(−)-quinic acid at a specific pH (4.0) afforded a colorless crystalline material K[Al(C7H11O6)3] · (OH) · 4H2O (1). Complex 1 was characterized by elemental analysis, FT-IR, DSC–TGA, 13C-MAS NMR, solution 1H and 13C NMR, and X-ray crystallography. The structure of 1 reveals a mononuclear octahedral complex of Al(III) with three singly ionized quinate ligands bound to it. The three ligand alcoholic side chains do not participate in metal binding and dangle away from the complex. The concurrent study of the aqueous speciation of the binary Al(III)–quinic acid system projects a number of species complementing the synthetic studies on the binary system Al(III)–quinic acid. The structural and spectroscopic data of 1 in the solid state and in solution emphasize its physicochemical properties emanating from the projections of the aqueous structural speciation scheme of the Al(III)–quinic acid system. The employed pH-specific synthetic work (a) exemplifies essential structural and chemical attributes of soluble aqueous species, arising from biologically relevant interactions of Al(III) with natural α-hydroxycarboxylate substrates, and (b) provides a potential linkage to the chemical reactivity of Al(III) toward O-containing molecular targets influencing physiological processes and/or toxicity events.  相似文献   

12.
In methanol/water medium at pH 6, the chelation of Al(III) by three mono-site ligands: 3-hydroxyflavone, 5-hydroxyflavone and 3′4′-dihydroxyflavone has been studied by electronic absorption spectroscopy. A comparison of the results obtained for the three chelating sites shows that the α-hydroxy-carbonyl group presents the greatest affinity for Al(III). When the three sites are in competition within a single compound: the quercetin (Q) molecule, this site remains the preferential site for fixing the metal cation. Indeed, the combined use of electronic spectroscopy and TD-DFT calculations has allowed highlighting the formation of the species [Al(H2O)(OH)Q2]0 involving chelation with the α-hydroxy-carbonyl site. Comparisons with an Al(III) complexation experiment carried out in methanol solution show that whatever the ligand, the presence of water molecules in the medium decreases the amount of complex formed.  相似文献   

13.
《Supramolecular Science》1998,5(5-6):553-558
Effect of trivalent elements on the thermal and hydrothermal stability of MCM-41 mesoporous molecular sieve materials has been investigated. Al(III) decreases the thermal and hydrothermal stability of MCM-41 materials, whereas La(III) and Fe(III), especially Fe(III), can improve the thermal and hydrothermal stability. Benzene adsorption and IR spectra suggested that thick channel wall and the fewer structural defect sites in MCM-41 would enhance the thermal and hydrothermal stability of MCM-41.  相似文献   

14.
通过模拟退火方法,使用协合分子力学力场对Si、Al分布分别为4:0序、两种3:1序和随机分布的NaA型沸石结构进行了能量最小化计算,获得了不同结构的位能及其生成热大小。计算结果表明,4:0序结构的位能和生成热在所讨论的几种序结构中最低,从而在理论上证实了Lowenstein规则是分子筛结构中能量最小化的自然结果。  相似文献   

15.
We report on a simple method for the determination of traces of aluminum(III) in water at pH 7.4 by using silver nanoparticles (Ag-NPs) functionalized with 8-hydroxyquinoline-5-sulfonate. The modified Ag-NPs undergo (a) a distinct color change from yellow to deep orange, and (b) a strong fluorescence enhancement upon addition of Al(III). Both the ratio of absorbances at 530 and 392 nm, and the intensity of fluorescence at 492 nm can serve as the analytical information. The absorption-based calibration plot increases linearly in the 0.1 to 4.0 μM Al(III) concentration range. The detection limit is 2.0 nM which is much lower than the permissible level (7.4 μM) for drinking water as defined by the World Health Organization. The method was successfully applied to the determination of Al(III) in samples of lake water, tap water and boiler water, and the recoveries were from 98 to 105 %. The assay also was applied to the determination of Al(III) in living mouse myeloma cells via fluorescence imaging. A linear relationship was obtained between relative fluorescence intensity (F/F0) and the concentration of Al(III) in the 0.05 μM to 4 μM concentration range. The detection limit is 15 nM.
A colorimetric assay for the traces Al3+ using silver nanoparticles (Ag-NPs) functionalized with 8-hydroxyquinoline-5-sulfonic acid was introduced. The color change was ascribed to aggregation of Ag-NPs induced by Al3+.  相似文献   

16.
The interaction of Np(VI), Pu(VI), Np(V), Np(IV), Pu(IV), Nd(III), and Am(III) with Al(III) in solutions at pH 0–4 was studied by the spectrophotometric method. It was shown that, in the range of pH 3–4, the hydrolyzed forms of neptunyl and plutonyl react with the hydrolyzed forms of aluminium. In the case of Pu(VI), the mixed hydroxoaqua complexes (H2O)3PuO2(-OH)2Al(OH)(H2O)3 2+ or (H2O)4PuO2OAl(OH)(H2O)4 2+ are formed at the first stage of hydrolysis. Np(VI) also forms similar hydroxoaqua complexes with Al(III). The formation of the mixed hydroxoaqua complexes was also observed when Np(IV) or Pu(IV) was simultaneously hydrolyzed with Al(III) at pH 1.5–2.5. The Np(IV) complex with Al(III) has, most likely, the formula (H2O) n (OH)Np(-OH)2Al(OH)(H2O)3 3+. At pH from 2 to 4.1 (when aluminium hydroxide precipitates), the Np(V) or Nd(III) ions exist in solutions with or without Al(III) in similar forms. When pH is increased to 5–5.5, these ions are almost not captured by the aluminium hydroxide precipitate.  相似文献   

17.
Owing to its combination of unique selectivity and mechanical strength, commercial carbon clad zirconia (C/ZrO2) has been widely used for many applications, including fast two-dimensional liquid chromatography (2DLC). However, the low surface area available (only 20–30 m2/g for commercial porous ZrO2) limits its retentivity. We have recently addressed this limitation by developing a carbon phase coated on the high surface area of HPLC grade alumina (C/Al2O3). This material provides higher retentivity and comparable selectivity, but its use is still limited by how few HPLC quality types of alumina particles (e.g., particle size, surface area, and pore size) are available. In this work, we have developed useful carbon phases on silica particles, which are available in various particle sizes, pore sizes and forms of HPLC grade. To make the carbon phase on silica, we first treat the silica surface with a monolayer or less of metal cations that bind to deprotonated silanols to provide catalytic sites for carbon deposition. After Al (III) treatment, a carbon phase is formed on the silica surface by chemical vapor deposition at 700 °C using hexane as the carbon source. The amount of Al (III) on the surface was varied to assess its effect on carbon deposition, and the carbon loading was varied at different Al (III) levels to assess its effect on the chromatographic properties of the various carbon adsorbents. We observed that use of a concentration of Al (III) corresponding to a full monolayer leads to the most uniform carbon coating. A carbon coating sufficient to cover all the Al (III) sites, required about 4–5 monolayers in this work, provided the best chromatographic performance. The resulting carbon phases behave as reversed phases with reasonable efficiency (50,000–79,000 plates/m) for non-aromatic test species.  相似文献   

18.
Site-selective and narrowed luminescence and excitation spectra in the region of the (2)E <-- (4)A 2 transitions are reported for single crystals of Al(acac) 3/Cr(III) and Al(3-Br-acac) 3/Cr(III) (where acac is acetylacetonate). The R 2 line is pronounced in the brominated system and displays a comparable oscillator strength as the R 1 line. The (2)E splitting is found to be 138 cm (-1), and the (4)A 2 ground-state splitting is 1.39 cm (-1). However, in the case of the Al(acac) 3/Cr(III) system the R 2 line is not a distinct feature. We propose that vibronic coupling via a second-order Jahn-Teller effect leads to a redistribution of R 2 intensity over several vibrational sidelines. An upper limit for the R 1 line width Gamma h = 15 MHz is deduced for the Al(acac) 3/Cr(III) 1% system at 1.5 K. This line width is limited by direct and indirect electron-spinelectron-spin interactions. Accurate zero-field splittings (1.20, 1.19, 1.17 cm (-1)) for the three sites in Al(acac) 3/Cr(III) are determined and compared with previously published electron paramagnetic resonance (EPR) data.  相似文献   

19.
Abbaspour A  Mirzajani R 《Talanta》2004,64(2):435-441
Simultaneous determination of V(V) and Al(III) was performed by application of neural networks when the calibration matrix was performed using β-correction spectra. Two reactions between V(V) and Al(III) and Alizarin Red S (ARS) as a ligand have been investigated and applied for the simultaneous spectrophotometric determination of these metal ions. The parameters controlling behavior of the system were investigated and optimum conditions selected. Feed-forward neural networks have been trained to quantify considered metal ions in mixtures under optimum conditions. Sigmoidal functions were used in the hidden and output layers. Determinations were made over the concentration range 0.10-7.80 μg ml−1 of V(V) and 0.11-4.20 μg ml−1 of Al(III). Applying this method satisfactorily to simultaneous determination of these metal ions in several synthetic solutions with total relative standard error less than 4.02% validated the proposed method.  相似文献   

20.
Recent research has shown that certain Li-oxide garnets with high mechanical, thermal, chemical, and electrochemical stability are excellent fast Li-ion conductors. However, the detailed crystal chemistry of Li-oxide garnets is not well understood, nor is the relationship between crystal chemistry and conduction behavior. An investigation was undertaken to understand the crystal chemical and structural properties, as well as the stability relations, of Li(7)La(3)Zr(2)O(12) garnet, which is the best conducting Li-oxide garnet discovered to date. Two different sintering methods produced Li-oxide garnet but with slightly different compositions and different grain sizes. The first sintering method, involving ceramic crucibles in initial synthesis steps and later sealed Pt capsules, produced single crystals up to roughly 100 μm in size. Electron microprobe and laser ablation inductively coupled plasma mass spectrometry (ICP-MS) measurements show small amounts of Al in the garnet, probably originating from the crucibles. The crystal structure of this phase was determined using X-ray single-crystal diffraction every 100 K from 100 K up to 500 K. The crystals are cubic with space group Ia3?d at all temperatures. The atomic displacement parameters and Li-site occupancies were measured. Li atoms could be located on at least two structural sites that are partially occupied, while other Li atoms in the structure appear to be delocalized. (27)Al NMR spectra show two main resonances that are interpreted as indicating that minor Al occurs on the two different Li sites. Li NMR spectra show a single narrow resonance at 1.2-1.3 ppm indicating fast Li-ion diffusion at room temperature. The chemical shift value indicates that the Li atoms spend most of their time at the tetrahedrally coordinated C (24d) site. The second synthesis method, using solely Pt crucibles during sintering, produced fine-grained Li(7)La(3)Zr(2)O(12) crystals. This material was studied by X-ray powder diffraction at different temperatures between 25 and 200 °C. This phase is tetragonal at room temperature and undergoes a phase transition to a cubic phase between 100 and 150 °C. Cubic "Li(7)La(3)Zr(2)O(12)" may be stabilized at ambient conditions relative to its slightly less conducting tetragonal modification via small amounts of Al(3+). Several crystal chemical properties appear to promote the high Li-ion conductivity in cubic Al-containing Li(7)La(3)Zr(2)O(12). They are (i) isotropic three-dimensional Li-diffusion pathways, (ii) closely spaced Li sites and Li delocalization that allow for easy and fast Li diffusion, and (iii) low occupancies at the Li sites, which may also be enhanced by the heterovalent substitution Al(3+) ? 3Li.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号