首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer-based organic solar cells are known to offer a poor stability in real use conditions, and the photodegradation of the active organic layer plays an important role in the reduced lifetime of the devices. This paper focuses on the photodegradation of two conjugated polymers used in organic solar cells, namely poly(2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene (MDMO-PPV) and poly(3-hexyylthiophene) (P3HT), and their blends with [60]PCBM (methano-fullerene[6,6]-phenyl C61-butyric acid methyl ester), a fullerene derivative. MDMO-PPV and P3HT thin films were submitted to photoageing (λ > 300 nm) in the presence and in the absence of oxygen. The mechanisms by which these polymers degrade were elucidated. P3HT, pristine and blended with PCBM, was shown to be much more stable under illumination than MDMO-PPV. The results showed that, if deposited on an inert substrate and well protected from oxygen with a convenient encapsulation, P3HT:PCBM based active layer should be intrinsically stable for several years in use conditions.  相似文献   

2.
In this work the phase behavior of [6,6]-phenyl C(61)-butyric acid methyl ester (PCBM) blends with different poly(phenylene vinylene) (PPV) samples is investigated by means of standard and modulated temperature differential scanning calorimetry (DSC and MTDSC) and rapid heat-cool calorimetry (RHC). The PPV conjugated polymers include poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene) (MDMO-PPV), High T(g)-PPV which is a copolymer, and poly((2-methoxy-5-phenethoxy)-1,4-phenylene vinylene) (MPE-PPV). Comparisons of these PPV:PCBM blends with regioregular poly(3-hexyl thiophene) (P3HT):PCBM blends are made to see the different component miscibilities among different blends. The occurrence of liquid-liquid phase separation in the molten state of MDMO-PPV:PCBM and High T(g)-PPV:PCBM blends is indicated by the coexistence of double glass transitions for blends with a PCBM weight fraction of around 80 wt%. This is in contrast to the P3HT:PCBM blends where no phase separation is observed. Due to its high cooling rate (about 2000 K min(-1)), RHC proves to be a useful tool to investigate the phase separation in PPV:PCBM blends through the glass transition of these crystallizable blends. P3HT is found to have much higher thermal stability than the PPV samples.  相似文献   

3.
The morphology of bulk-heterojunctions (BHJ) is critically important for conjugated polymer and fullerene blend solar cells. To alter the morphology, high pressure (gas phase) carbon dioxide (CO(2)) treatment is applied to poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) blend films under ambient temperature. This process can achieve vertically phase separated morphology such that PCBM distributes toward the film surface, which is suggested by secondary ion mass spectroscopy (SIMS), contact angle, X-ray photoelectron spectroscopy (XPS) and cross-sectional scanning electron microscope (SEM) studies. While pristine P3HT films do not show a significant change upon CO(2) treatment, pristine PCBM films are plasticized in high pressure CO(2). Thus, PCBM is selectively plasticized by CO(2) in the blend film and is drawn towards the surface due to depressed surface energy, although P3HT tends to distribute around the surface without CO(2). This stratification process can enhance solar cell performance. 55% improvement is achieved in the power conversion efficiency of the CO(2) treated device compared to the untreated one, indicating that CO(2) treatment can be a good candidate for optimizing the morphology and enhancing the performance of BHJ polymer solar cells.  相似文献   

4.
通过掺杂吸收光谱在可见光波段的量子点可提高聚合物对可见光的吸收,因此掺杂CdSe/ZnS核-壳结构量子点(CQDs)能提高聚(3-己基噻吩):[6,6]-苯基-C61-丁酸甲酯(P3HT:PCBM)体异质结太阳电池的能量转换效率.本文研究了CdSe/ZnS量子点在P3HT:PCBM中的不同掺杂比例及其表面配体对太阳电池光伏性能的影响,优化器件ITO(氧化铟锡)/PEDOT:PSS(聚(3,4-乙撑二氧噻吩:聚苯乙烯磺酸)/P3HT:PCBM:(CdSe/ZnS)/Al的能量转换效率达到了3.99%,与相同条件下没有掺杂量子点的参考器件ITO/PEDOT:PSS/P3HT:PCBM/Al相比,其能量转换效率提高了45.1%.  相似文献   

5.
An easily accessible DPP‐based small molecule ( DMPA‐DTDPP ) has been synthesized by a simple and efficient route. The resulting molecule, when incorporated into a P3HT:PCBM‐based BHJ solar cell, is found to significantly improve the efficiency. The utility of DMPA‐DTDPP as an additive yields an increase in the short circuit current density (Jsc) because DMPA‐DTDPP serves as an energy funnel for P3HT excitons at the P3HT:PCBM interfaces, resulting in an improved overall power conversion efficiency, compared to the P3HT:PCBM control device. Considering the trouble‐free and cost effective synthesis of DMPA‐DTDPP , it may prove very useful in high‐performance solar cells.  相似文献   

6.
退火处理提高P3HT:PCBM聚合物太阳能电池光伏性能   总被引:2,自引:0,他引:2  
利用旋转涂膜方法制备了以P3HT:PCBM为有源层的聚合物太阳能电池, 器件结构为ITO/PEDOT:PSS/P3HT:PCBM/Al(氧化铟锡导电玻璃/聚二氧乙基噻吩:聚对苯乙烯磺酸/聚三已基噻酚:富勒烯衍生物/铝),研究了退火温度对聚合物太阳能电池性能的影响. 实验发现: 聚合物薄膜经过120 °C退火10 min处理后, 开路电压(Voc)达到0.64 V, 短路电流密度(Jsc)为10.25 mA·cm-2, 填充因子(FF) 38.1%, 光电转换效率(PCE)达到2.00%. 为了讨论其内在机制, 对不同退火条件下聚合物薄膜进行了各种表征. 从紫外-可见吸收光谱中发现, 退火处理使P3HT在可见光范围内吸收加强且吸收峰展宽, 特别是在560和610 nm处的吸收强度明显增大; X射线衍射(XRD)结果表明, 120 °C退火后P3HT在(100)晶面上的衍射强度是未退火薄膜的2.8倍, 有利于光生载流子的输运; 原子力显微镜(AFM)研究结果表明, 退火显著增大了P3HT与PCBM的相分离程度, 提高了激子解离的几率; 傅里叶变换红外(FTIR)光谱验证了退火并没有引起聚合物材料物性的变化.  相似文献   

7.
We synthesized and characterized three new amorphous dithienylbenzothiadiazole (TBT)‐triphenylamine (TPA) polymers for application in bulk‐heterojunction (BHJ) organic photovoltaic (OPV) cells. Poly(3HTBT‐TPA) has hexyl side chains on the thienyl groups (pointing toward the benzothiadiazole (BTD) unit), and poly(4HTBT‐TPA) has hexyl side chains on the thienyl groups (pointing outward from the BTD unit). The incident photon to current conversion efficiencies (IPCEs) in the region from 550 to 650 nm for the OPV cells prepared using poly(4HTBT‐TPA) were higher than those for the OPV cells prepared using poly(3HTBT‐TPA) because the absorption spectrum for the poly(4HTBT‐TPA) has a slightly red‐shifted absorption edge. We also demonstrated that the poly(4HTBT‐TPA)‐based OPV performance is independent of the fabrication process, so using an amorphous film to fabricate BHJ OPV cells offers great advantages over using a polycrystalline film in terms of the high reproducibility of the OPV performance. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2536–2544  相似文献   

8.
刘智勇  徐文涛  王宁  杨小牛 《应用化学》2012,29(12):1423-1427
采用喷涂工艺制备了结构为ITO/ZnO/P3HT∶PCBM/V2O5/Ag(P3HT:聚噻吩;PCBM:6,6-苯基-C61-丁酸甲酯)的大面积倒置光伏器件,有效面积为1.0×1.1 cm2。 光谱测试结果表明,退火处理后,P3HT∶PCBM薄膜吸收显著增强,并且产生一定程度的红移。 采用ZnO和V2O5代替LiF和PEDOT∶PSS(聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸盐)作为器件修饰层,避免了PEDOT∶PSS对ITO的腐蚀和LiF潮解,采用Ag代替Al作为金属背电极避免了Al被氧化。 经过后退火处理器件的效率从1.1%提升至1.65%。 器件的稳定性相对于传统结构有了大幅提升,8周后器件效率只衰减10%。  相似文献   

9.
We have studied the electron/hole transport and recombination dynamics in blends of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene], (MDMO-PPV) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) at room temperature, as a function of laser excitation density and PCBM concentration. The experimental results of these studies indicate the important role played by hole-trap states in MDMO-PPV. Electron and hole transport are not balanced within the blend. PCBM is a less disordered material than MDMO-PPV and electron transport dominates the response of the solar cell device.  相似文献   

10.
Photovoltaic technology is an alternative resource for renewable and sustainable energy and low costs organic photovoltaic devices such as bulk-heterojunction (BHJ) solar cells, which are selective candidates for the effective conversion of solar energy into electricity. Asymmetric phthalocyanines containing electron acceptor and donor groups create high photovoltaic conversion efficiency in dye sensitized solar cells. In this study, a new unsymmetrical zinc phthalocyanine was designed and synthesized including thiophene and amine groups at peripherally positions for BHJ solar cell. The structure of the targeted compound (4) was characterized comprehensively by FT-IR, UV–Vis, 1H-NMR, and MALDI-TOF MS spectroscopies. The potential of this compound in bulk heterojunction (BHJ) photovoltaic devices as donor was also researched as function of blend ratio (blend ratio was varied from 0.5 to 4). For this purpose, a series of BHJ devices with the structure of fluorine doped indium tin oxide (FTO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/ ZnPc:[6,6]- phenyl-C61- butyric acid methyl ester (PCBM) blend/Al with identical thickness of ZnPc:PCBM layer were fabricated and characterized. Photo current measurements in 4 revealed that the observed photo current maximum is consistent with UV-vis spectra of the compound of 4. Preliminary studies showed that the blend ratio has a critical effect on the BHJ device performance parameters. Photovoltaic conversion efficiency of 6.14% was achieved with 4 based BHJ device.  相似文献   

11.
Copolymers with an alternating structure of regioregular oligo(3‐hexylthiophene) (O3HT) with different lengths and 2,5‐dibutyl‐3,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione (DPP) were synthesized through Stille coupling reaction. The light absorption of the copolymers can be rationally tuned to have a broad spectrum across the visible region by adjusting the length of O3HT. Organic solar cells fabricated with the copolymers and PCBM showed a broad photoresponse and a comparable efficiency to that of poly(3‐hexylthiophene) (P3HT):PCBM cells. The external quantum efficiency and fluorescence spectra suggested that the intrachain energy transfer from the O3HT block to the vicinity of the DPP unit could limit the photovoltaic performance of the copolymers.  相似文献   

12.
Three two-dimensional (2-D) conjugated polythiophenes with bi(thienylenevinylene) side chains (biTV-PTs), P1, P2, and P3, were designed and synthesized for application in polymer solar cells. The absorption spectral, electrochemical, and photovoltaic properties of the biTV-PTs were investigated and compared with those of poly(3-hexylthiophene) (P3HT). The biTV-PTs show a broad absorption band from 350 to 650 nm; especially, the absorption spectrum of P3 displays a broad plateau and much stronger absorbance than that of P3HT in the wavelength range from 350 to 480 nm. Cyclic voltammograms reveal that the onset oxidation and reduction potentials of the biTV-PTs positively shifted by ca. 0.2 V in comparison with those of P3HT, indicating that the HOMO energy level of the biTV-PTs is ca. 0.2 eV lower than that of P3HT. Polymer solar cells (PSCs) were fabricated based on the blend of the polymers and 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-C-61 (PCBM) with a weight ratio of 1:1. The open circuit voltage of the PSCs based on the biTV-PTs is ca. 0.1 V higher than that of P3HT, which is benefited from the lower HOMO levels of the biTV-PTs. The maximum power conversion efficiency (PCE) of the PSCs based on P3 reached 3.18% under AM 1.5, 100 mW/cm2, which is 38% increased in comparison with that (2.41%) of the devices based on P3HT under the same experimental conditions. The results indicate that the 2-D conjugated biTV-PTs are promising polymer photovoltaic materials.  相似文献   

13.
Spin‐coating a mixture solution of P3HT and PCBM on a cold substrate largely enhanced the power conversion efficiency (PCE) of the bulk heterojunction (BHJ) solar cells. This concept was based on the abrupt decrease in the solubility of P3HT as solution temperature decreased. The selective precipitation of P3HT on the PEDOT:PSS‐coated cold substrate facilitated a desirable rich composition of P3HT at the interface with the PEDOT:PSS layer. The high crystallinity of P3HT suppressed the movement of PCBM during thermal annealing, preventing aggregation of PCBM. The morphological excellence of the pristine film gave a comparable PCE to that made by the conventional fabrication process. After thermal annealing, the device made via coating on a cold substrate showed above 30% increase in PCE from the BHJ solar cells made by the conventional method.

  相似文献   


14.
New all‐conjugated block copolythiophene, poly(3‐hexylthiophene)‐block‐poly(3‐(4′‐(3″,7″‐dimethyloctyloxy)‐3′‐pyridinyl)thiophene) (P3HT‐b‐P3PyT) was successfully prepared by Grignard metathesis polymerization. The supramolecular interaction between [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) and P3PyT was proposed to control the aggregated size of PCBM and long‐term thermal stability of the photovoltaic cell, as evidenced by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and optical microscopy. The effect of different solvents on the electronic and optoelectronic properties was studied, including chloroform (CL), dichlorobenzene (DCB), and mixed solvent of CL/DCB. The optimized bulk heterojunction solar cell devices using the P3HT‐b‐P3PyT/PCBM blend showed a power conversion efficiency of 2.12%, comparable to that of P3HT/PCBM device despite the fact that former had a lower crystallinity or absorption coefficient. Furthermore, P3HT‐b‐P3PyT could be also used as a surfactant to enhance the long‐term thermal stability of P3HT/PCBM‐based solar cells by limiting the aggregated size of PCBM. This study represents a new supramolecular approach to design all‐conjugated block copolymers for high‐performance photovoltaic devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

15.
利用旋转涂膜方法制备了以P3HT:PCBM为有源层的聚合物太阳能电池, 器件结构为ITO/PEDOT:PSS/P3HT:PCBM/Al(氧化铟锡导电玻璃/聚二氧乙基噻吩:聚对苯乙烯磺酸/聚三已基噻酚:富勒烯衍生物/铝),研究了退火温度对聚合物太阳能电池性能的影响. 实验发现: 聚合物薄膜经过120 °C退火10 min处理后, 开路电压(Voc)达到0.64 V, 短路电流密度(Jsc)为10.25 mA·cm-2, 填充因子(FF) 38.1%, 光电转换效率(PCE)达到2.00%. 为了讨论其内在机制, 对不同退火条件下聚合物薄膜进行了各种表征. 从紫外-可见吸收光谱中发现, 退火处理使P3HT在可见光范围内吸收加强且吸收峰展宽, 特别是在560和610 nm处的吸收强度明显增大; X射线衍射(XRD)结果表明, 120 °C退火后P3HT在(100)晶面上的衍射强度是未退火薄膜的2.8倍, 有利于光生载流子的输运; 原子力显微镜(AFM)研究结果表明, 退火显著增大了P3HT与PCBM的相分离程度, 提高了激子解离的几率; 傅里叶变换红外(FTIR)光谱验证了退火并没有引起聚合物材料物性的变化.  相似文献   

16.
We prepared the polymer solar cell based on poly(3-hexylthiophene)(P3HT)/fullerene derivative PCBM(PCBM=[6,6]-phenyl-C61-butyric acid methyl ester) heterojunction and investigated the irradiation intensi- ty-dependent charge recombination dynamics of heterojunction employing nanosecond transient absorption spectroscopy with bias light so as to simulate the photophysical process in heterojunction when the photovoltaic device is on operation. The experimental data exhibit that the yield of free charges gradually decreases and the loss of mobile carriers originated from bimolecular recombination simultaneously increases as the irradiation intensity gradually enhances. This indicates that the polymer solar cell is much suitably used at a low irradiation intensity.  相似文献   

17.
Two non-fullerene small molecules, BT-C6 and BT-C12, based on the vinylene-linked benzothiadiazole- thiophene(BT) moiety flanked with 2-(3,5,5-trimethylcyclohex-2-en-1-ylidene)malononitrile have been synthesized and characterized by solution/thin film UV-Vis absorption, photoluminescence(PL), and cyclic voltammetry(CV) measurements. The two molecules show intense absorption bands in a wide range from 300 nm to 700 nm and low optical bandgaps for BT-C6(1.60 eV) and for BT-C12(1.67 eV). The lowest unoccupied molecular orbital(LUMO) levels of both the molecules are relatively higher than that of [6,6]-phenyl C61 butyric acid methyl ester(PCBM), promising high open circuit voltage(Voc) for photovoltaic application. Bulk heterojunction(BHJ) solar cells with poly(3-hexylthiophene) (P3HT) as the electron donor and the two molecules as the acceptors were fabricated. Under 100 mW/cm2 AM 1.5 G illumination, the devices based on P3HT:BT-C6(1:1, mass ratio) show a power conversion efficiency(PCE) of 0.67%, a short-circuit current(Jsc) of 1.63 mA/cm2, an open circuit voltage(Voc) of 0.74 V, and a fill factor(FF) of 0.56.  相似文献   

18.
以聚3-己基噻吩(P3HT)为给体、[6,6]-苯基-C61-丁酸甲酯(PCBM)为受体的光伏体系作为研究对象,采用溶剂退火的后处理方法制备薄膜样品,利用紫外-可见(UV-Vis)吸收光谱、原子力显微镜(AFM)、X射线衍射(XRD)等测试手段分别对共混膜样品的形貌和结构进行表征,同时利用熵值统计方法对AFM形貌图像进行分析处理.并在此基础上制备太阳能电池器件,其结构为氧化铟锡导电玻璃/聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐/聚3-己基噻吩:[6,6]-苯基-C61-丁酸甲酯/金属铝(ITO/PEDOT:PSS/P3HT:PCBM/Al),研究了给受体共混比例(质量比)对活性层薄膜以及电池性能的影响.结果表明,受体PCBM含量的增加会影响P3HT给体相的有序结晶,当给受体比例为1:1时,活性层薄膜具有较宽的紫外-可见吸收特征,且具有较好的相分离和结晶度,基于该样品制备的电池器件其光电转换效率达到三种比例的最大值(2.77%).表明退火条件下,改变给受体比例可以影响活性层的微纳米结构而最终影响电池的光电转换效率.  相似文献   

19.
Two crystal structures of PCBM, obtained from different crystallisation solvents, are presented; a proposed link with solvent dependence of the efficiency of MDMO-PPV:PCBM solar cells is described.  相似文献   

20.
Optical properties of a blend thin film (1:1 wt) of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) exposed to a stepwise heating and cooling, have been reported and compared with the properties of pure PCBM and P3HT films. The UV–Vis(T) absorption measurements were performed in situ, during annealing and cooling runs, at the precisely defined temperatures, in a range of 20–210 °C. It was demonstrated that this new method allows to observe the changes of absorption coefficient spectra and absorption edge parameters: the energy gap (EG) and the Urbach energy (EU), connected with the length of conjugation and structural disorder of thin film, respectively. Several stages, during annealing/cooling runs, were distinguished for the P3HT:PCBM blend film and related to the following processes, as an increase of P3HT crystallinity in the blend, the orderly stacking of polymer chains, thermally induced structural defects and the phase separation, caused by an aggregation of PCBM in the polymer matrix. These changes were also observed on the P3HT:PCBM film surface, by means to the microscopic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号