首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
报道了新型空气动力辅助离子化(AFAI)装置与不同类型商业化质量分析器的快速接口技术. 在前期研究基础上, 进一步提高了AFAI系统的抽气流速, 在更宽范围内考察了流速对质谱灵敏度的影响; 对AFAI离子源进行模块化设计和制作, 重点解决快速接口问题, 通过更换接口板可实现其与不同厂家、 不同类型质量分析器的兼容及联用, 尤其可以与具有气帘接口的质量分析器联用. 本离子源装置结合不同质量分析器可以进行全扫描、 子离子扫描、 母离子扫描、 中性丢失扫描和高分辨等多种类型质谱分析, 而且AFAI可在电喷雾(ESI)、 解析电喷雾(DESI)和大气压化学电离(APCI)等多种离子化模式下工作, 从而实现对不同性质化合物的快速检测. 本研究结果进一步提高了AFAI离子化技术的功能, 拓展了其应用范围.  相似文献   

2.
The imaging mass spectrometry(IMS) technology has experienced a rapid development in recent years.A new IMS technology which is based on air flow assisted ionization(AFAI) was reported.It allows for the convenient pretreatment of the samples and can image a large area of sample in a single measurement with high sensitivity.The AFAI in DESI mode was used as the ion source in this paper.The new IMS method is named AFADESI-IMS.The adoption of assisted air flow makes the sample pretreatment easy and convenient.An optimization of the distance between the ion transport tube and MS orifice increases the sensitivity of the system.For data processing,a program based on MATLAB with the function of numerical analysis was developed.A theoretical imaging resolution of a few hundred microns can be achieved.The composite AFAI-IMS images of different target analytes were imaged with high sensitivity.A typical AFAI-IMS image of the whole-body section of a rat was obtained in a single analytical measurement.The ability to image a large area for relevant samples in a single measurement with high sensitivity and repeatability is a significant advantage.The method has enormous potentials in the MS imaging of large and complicated samples.  相似文献   

3.
近年来常压敞开式离子源凭借快速、原位、实时离子化样品等优势,被广泛应用于样品快速筛查、真伪鉴定、质谱成像等领域,已成为当今离子源的研究热点,受到了学术界及仪器制造、化学和生物分析等相关产业界的广泛关注。目前,该类离子源朝着克服基体效应、提高样品表面定位能力及增加离子传输距离等方向发展。本文主要介绍了可以很好解决上述问题并具有代表性的三种常压敞开式离子源:电喷雾萃取离子源(EESI)、介质阻挡放电离子源(DBDI)及空气动力辅助离子源(AFAI),重点涉及原理以及在此基础上所做的设计改进和应用进展。  相似文献   

4.
A needle trap (NT) technique for simultaneous sampling and analysis of vapor and particle mercury in ambient air using gold wire filled in a syringe needle has been developed. This NT technique relies on gold amalgamation rather than adsorption/absorption to traditional solid-phase microextraction. Hg trapped by Au-amalgamation NT is thermally desorbed in a hot injection port of a gas chromatograph; desorbed Hg is then determined by the coupled mass spectrometer. This simultaneous sampling and analysis technique were optimized, tested, and used for the collection and accurate determination of elemental Hg in ambient air. Linear calibration curves were obtained for Hg sampling by NT when mass spectrometry (MS) was used for detection; they spanned over 4 orders of magnitude. MS offered excellent sensitivity and selectivity. Selected ion monitor (SIM) mode was used for the linear calibration curves. The selected quantitation ion was m/z 202, since m/z 202 was the strongest isotope of mercury mass spectrum. The method was verified with HgCl(2) spiked solution samples. An excellent agreement was found between the results obtained for the Hg-saturated air samples and HgCl(2) spiked solution samples. The use of the Au-amalgamation gas-sampling needle trap method, for the measurement of Hg in air and Hg(2+) water samples, is described herein.  相似文献   

5.
A single gas‐assisted electrospray ion source developed for ambient mass spectrometry is introduced in this paper. Simultaneous self‐aspiration and electrospray could be achieved by using a constant sheath gas flow supplied from a mini air pump. A gas dynamic study of the spray module is carried out for structural optimization. The entire device exhibits a simplified design and has been systematically characterized through both simulated and experimental investigations. According to the results, the ion source exhibited satisfactory stability and the ability for quantitative operation in routine electrospray ionization mass spectrometry. Furthermore, the ion source can be operated as a desorption electrospray ionization source to perform direct desorption/ionization of the solid samples. The versatile source described here appears to provide a practical approach to perform ambient mass spectrometry analysis with unrestricted sampling operation, and the extensive gas dynamic studies together with the experimental characterization are believed to be helpful in building self‐aspirating spray devices. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
本研究以721矿和745矿嗜酸性氧化亚铁硫杆菌为研究对象,采用常压化学电离质谱直接分析其代谢产物,分别考察了顶空采样( Headspace sampling)、界面采样( Interface sampling)和中性解吸采样( Neutral desorption sampling)3种进样方式对电离效果的影响。在优化条件下,常压化学电离质谱对微生物纯菌种和混合菌种的代谢产物均具有良好的分析能力,可根据获得的代谢产物指纹谱图结合主成分分析( PCA)方法和聚类分析( CA)方法区分2个放射性强弱不同区域共4类嗜酸性微生物样品,并对主要胺类、酯类等代谢成分进行串联质谱鉴定,为耐辐射微生物的相关研究提供了一种可借鉴的分析方法。  相似文献   

7.
Sonic spray ionization is shown to create a supersonic cloud of charged droplets able to promote efficient desorption and ionization of drugs directly from the surfaces of commercial drug tablets at ambient conditions. Compared with desorption electrospray ionization (DESI), desorption sonic spray ionization (DeSSI) is advantageous since it uses neither heating nor high voltages at the spray capillary. DeSSI therefore provides a more friendly environment in which to perform ambient mass spectrometry (MS). DeSSI-MS is herein evaluated for the analysis of drug tablets, and found to be, in general, as sensitive as DESI-MS. The (high) voltage-free DeSSI method provides, however, cleaner mass spectra with less abundant solvent cluster ions and with enough abundant analyte signal for tandem mass spectrometry (MS/MS). These features may therefore facilitate the DeSSI-MS detection of low molar mass components or impurities, or both. The higher-velocity supersonic DeSSI spray also facilitates matrix penetration thus providing more homogenous sampling and longer lasting ion signals.  相似文献   

8.
Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.
Figure
?  相似文献   

9.
Ambient mass spectrometry: bringing MS into the “real world”   总被引:1,自引:0,他引:1  
Mass spectrometry has recently undergone a second contemporary revolution with the introduction of a new group of desorption/ionization (DI) techniques known collectively as ambient mass spectrometry. Performed in an open atmosphere directly on samples in their natural environments or matrices, or by using auxiliary surfaces, ambient mass spectrometry (MS) has greatly simplified and increased the speed of MS analysis. Since its debut in 2004 there has been explosive growth in the applications and variants of ambient MS, and a very comprehensive set of techniques based on different desorption and ionization mechanisms is now available. Most types of molecules with a large range of masses and polarities can be ionized with great ease and simplicity with the outstanding combination of the speed, selectivity, and sensitivity of MS detection. This review describes and compares the basis of ionization and the concepts of the most promising ambient MS techniques known to date and illustrates, via typical analytical and bioanalytical applications, how ambient MS is helping to bring MS analysis deeper than ever into the “real world” open atmosphere environment—to wherever MS is needed.  相似文献   

10.
Direct Analysis in Real Time (DART) is an ambient ionization technique for mass spectrometry that provides rapid and sensitive analyses with little or no sample preparation. DART has been reported primarily for mass analyzers of low to moderate resolving power such as quadrupole ion traps and time‐of‐flight (TOF) mass spectrometers. In the current work, a custom‐built DART source has been successfully coupled to two different Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometers for the first time. Comparison of spectra of the isobaric compounds, diisopropyl methylphosphonate and theophylline, acquired by 4.7 T FT‐ICR MS and TOF MS, demonstrates that the TOF resolving power can be insufficient for compositionally complex samples. 9.4 T FT‐ICR MS yielded the highest mass resolving power yet reported with DART ionization for 1,2‐benzanthracene and 9,10‐diphenylanthracene. Polycyclic aromatic hydrocarbons exhibit a spatial dependence in ionization mechanisms between the DART source and the mass spectrometer. The feasibility of analyzing a variety of samples was established with the introduction and analysis of food products and crude oil samples. DART FT‐ICR MS provides complex sample analysis that is rapid, highly selective and information‐rich, but limited to relatively low‐mass analytes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Methods and devices that use gas flows to collect ions and transfer them over long distances for mass spectrometric analysis have been developed. Gas flows derived from the ionization source itself or provided by means of additional pumping were used to generate a laminar flow inside cylindrical tube. Hydrodynamic simulations and experimental tests demonstrate that laminar flow can transfer ions over long distance. The typical angular discrimination effects encountered when sampling ions from ambient ionization sources are minimized, and the sampling of relatively large surface areas is demonstrated with desorption electrospray ionization (DESI). Ion transfer over 6 m has been achieved and its application to multiplexed chemical analysis is demonstrated on samples at locations remote from the mass spectrometer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
It is of increasing interest and practical importance to develop convenient methods based on mass spectrometry for high-throughput analyses of biological samples. This is usually difficult because of the complex matrix and ion suppression effects. Generation of ions at ambient conditions is a promising solution to these problems because the sample is easily accessible and the ion suppression effect is reduced significantly. A new method for rapid on-line detection of metabolic markers in complex biological samples is described here. It combines atmospheric pressure desorption sampling by a gentle stream of air or nitrogen with extractive electrospray ionization (EESI) and mass spectrometric analysis. The resulting mass spectral fingerprints are shown to be able to detect spoilage of meat even in the frozen (-20 degrees C) state and the contamination of spinach by E. coli, and to identify metabolites and contaminants on human skin within seconds, in an on-line and high-throughput fashion. Typical molecular markers are identified using MS/MS data and by comparison with reference compounds. Differences between closely related samples are easily visualized by using principal component analysis (PCA) of the mass spectra data. The detection limit achieved is 10 fg/cm2 (S/N = 3) for histamine on the surface of frozen meat. The technique reported here shows potential for more advanced applications in multiple disciplines, including food regulation, homeland security, in vivo metabolomics, and clinical diagnosis.  相似文献   

13.
Desorption electrospray ionization mass spectrometry (DESI‐MS) requires little to no sample preparation and has been successfully applied to the study of biologically significant macromolecules such as proteins. However, DESI‐MS and other ambient methods that use spray desorption to process samples during ionization appear limited to smaller proteins with molecular masses of 25 kDa or less, and a decreasing instrumental response with increasing protein size has often been reported. It has been proposed that this limit results from the inability of some proteins to easily desorb from the surface during DESI sampling. The present study investigates the apparent mass dependence of the instrumental response observed during the DESI‐MS analysis of proteins using spray desorption collection and reflective electrospray ionization. Proteins, as large as 66 kDa, are shown to be quantitatively removed from surfaces by using spray desorption collection. However, incomplete dissolution and the formation of protein–protein and protein–contaminant clusters appear to be responsible for the mass‐dependent loss in sensitivity for protein analysis. Alternative ambient mass spectrometry approaches that address some of the problems encountered by spray desorption techniques for protein analysis are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Real-time monitoring of benzene, toluene, ethylbenzene, and xylenes (BTEX) in ambient air is essential for the early warning detection associated with the release of these hazardous chemicals and in estimating the potential exposure risks to humans and the environment. We have developed a tandem mass spectrometry (MS/MS) method for continuous real-time determination of ambient trace levels of BTEX. The technique is based on the sampling of air via an atmospheric pressure inlet directly into the atmospheric pressure chemical ionization (APCI) source. The method is linear over four orders of magnitude, with correlation coefficients greater than 0.996. Low limits of detection in the range 1–2 μg/m3 are achieved for BTEX. The reliability of the method was confirmed through the evaluation of quality parameters such as repeatability and reproducibility (relative standard deviation below 8% and 10%, respectively) and accuracy (over 95%). The applicability of this method to real-world samples was evaluated through measurements of BTEX levels in real ambient air samples and results were compared with a reference GC-FID method. This direct APCI-MS/MS method is suitable for real-time analysis of BTEX in ambient air during regulation surveys as well as for the monitoring of industrial processes or emergency situations.  相似文献   

15.
Bisphenol A (BPA) is a toxic industrial chemical that affects the endocrine system even at low concentrations. A new method, based on capillary high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS) analysis, has been developed to determine BPA in atmospheric samples. The method involves collection of air samples (typically 2 m(3)) on glass fiber filters, with ultrasonic extraction and sample concentration under vacuum before analysis. HPLC analysis was performed isocratically at a flow rate of 10 microL min(-1) using a capillary reversed-phase column and MS/MS analysis in negative ion multiple reaction monitoring (MRM) mode, using BPA-d(16) as internal standard. The present method provides linear response in the range 0.007-3.5 microg/filter (R(2) > 0.999) and is characterized by high accuracy (mean bias 2%) and good reproducibility (mean RSD 5%). High sensitivity (LOD = 2 ng/m(3) based on 2 m(3) of air collected), specificity, and speed of the analysis make the present method suitable for routine determination of BPA in the atmosphere, both for ambient and personnel monitoring.  相似文献   

16.
A new tandem mass spectrometry (MS/MS) method based on the use of an ion trap mass spectrometer for the identification and quantitation of F(2)-isoprostanes has been developed. It consists of two solid-phase extractions and two derivation steps followed by gas chromatography/negative ion chemical ionization tandem mass spectrometry (GC/NICI-MS/MS) analysis. This method is highly selective and sensitive and it has been successfully applied to biological samples.  相似文献   

17.
The recently developed technique of desorption electrospray ionization (DESI) has been applied to the rapid analysis of controlled substances. Experiments have been performed using a commercial ThermoFinnigan LCQ Advantage MAX ion-trap mass spectrometer with limited modifications. Results from the ambient sampling of licit and illicit tablets demonstrate the ability of the DESI technique to detect the main active ingredient(s) or controlled substance(s), even in the presence of other higher-concentration components. Full-scan mass spectrometry data provide preliminary identification by molecular weight determination, while rapid analysis using the tandem mass spectrometry (MS/MS) mode provides fragmentation data which, when compared to the laboratory-generated ESI-MS/MS spectral library, provide structural information and final identification of the active ingredient(s). The consecutive analysis of tablets containing different active components indicates there is no cross-contamination or interference from tablet to tablet, demonstrating the reliability of the DESI technique for rapid sampling (one tablet/min or better). Active ingredients have been detected for tablets in which the active component represents less than 1% of the total tablet weight, demonstrating the sensitivity of the technique. The real-time sampling of cannabis plant material is also presented.  相似文献   

18.
An exceptionally easy to assemble source for ambient mass spectrometry is described. Based on Venturi easy ambient sonic-spray ionization (V-EASI), the source was further simplified by the use of a can of compressed air which simultaneously provides solution or solvent Venturi self-pumping and continuous, stable and abundant low-noise ion signal via voltage-free sonic-spraying. Further simplification was also attained by the use of inexpensive and readily commercially available parts: a surgical 2-way catheter, an aerosol can of compressed air, a 30 cm long fused-silica capillary and a hypodermic needle. This "Spartan" V-EASI source seems to offer one of the easiest and cheapest ways to make ions for ambient desorption/ionization mass spectrometry analysis of both liquid and solid samples.  相似文献   

19.
敞开式离子化质谱(Ambient ionization mass spectrometry,AI-MS)是近年来兴起的质谱分析技术,可在敞开的大气环境下实现离子化,无需或只需少许样品前处理步骤,具有实时、简便、快速、高通量等诸多优点.近年来AI-MS技术的发展与应用已成为质谱领域备受关注的热点之一.该文综述了AI-MS...  相似文献   

20.
Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) have been used in conjunction with time-of-flight (TOF) and quadrupole ion trap (IT) mass spectrometry, respectively, to analyze various cytolysin proteins isolated from the sea anemone Stichodactyla helianthus and digested by the protease trypsin. By employing different ionization methods, the subsequent changes in ionization selectivity for the peptides in the digested protein samples resulted in ion abundance variation reflected in the mass spectra. Upon investigation of this variation generated by the two ionization processes, it has been shown in this study that enhanced protein coverage (e.g., >95% for cytolysin III) can be achieved. Additionally, capillary and microbore reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with ESI mass spectrometry (MS) as well as flow injection analysis by nanoflow ESI-MS afforded the necessary limit of detection (LOD) for detailed structural information of the cytolysin proteins by tandem mass spectrometry (MS/MS) methods. It can be concluded that cytolysins II and III correspond to sticholysins I and II, that "cytolysin I" is a mixture of modified forms of cytolysins II and III, and that "cytolysin IV" is an incompletely processed precursor of cytolysin III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号