首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Efficient photocatalytic oxygenation of toluene occurs under visible light irradiation of 9-mesityl-10-methylacridinium (Acr+–Mes) in oxygen-saturated acetonitrile containing toluene and aqueous hydrochloric acid with a xenon lamp for 15 h. The oxygenated products, benzoic acid (70 %) and benzaldehyde (30 %), were formed after the photoirradiation. The photocatalytic reaction is initiated by intramolecular photoinduced electron transfer from the mesitylene moiety to the singlet excited state of the Acr+ moiety of Acr+–Mes, which affords the electron-transfer state, Acr?–Mes?+. The Mes?+ moiety can oxidize chloride ion (Cl?) by electron transfer to produce chlorine radical (Cl?), whereas the Acr? moiety can reduce O2 to O 2 ?? . The Cl? radical produced abstracts a hydrogen from toluene to afford benzyl radical in competition with the bimolecular radical coupling of Cl?. The benzyl radical reacts with O2 rapidly to afford the peroxyl radical, leading to the oxygenated product, benzaldehyde. Benzaldehyde is readily further photooxygenated to yield benzoic acid with Acr?–Mes?+. In the case of an aromatic compound with electron-donating substituents, 1,3,5-trimethoxybenzene, photocatalytic chlorination occurred efficiently under the same photoirradiation conditions to yield a monochloro-substituted compound, 2,4,6-trimethoxychlorobenzene.  相似文献   

2.
The direct and controlled activation of a C(sp3)?H bond adjacent to an O atom is of particular synthetic value for the conventional derivatization of ethers or alcohols. In general, stoichiometric amounts of an oxidant are required to remove an electron and a hydrogen atom of the ether for subsequent transformations. Herein, we demonstrate that the activation of a C?H bond next to an O atom could be achieved under oxidant‐free conditions through photoredox‐neutral catalysis. By using a commercial dyad photosensitizer (Acr+‐Mes ClO4?, 9‐mesityl‐10‐methylacridinium perchlorate) and an easily available cobaloxime complex (Co(dmgBF2)2?2 MeCN, dmg=dimethylglyoxime), the nucleophilic addition of β‐keto esters to oxonium species, which is rarely observed in photocatalysis, leads to the corresponding coupling products and H2 in moderate to good yields under visible‐light irradiation. Mechanistic studies suggest that both isochroman and the cobaloxime complex quench the electron‐transfer state of this dyad photosensitizer and that benzylic C?H bond cleavage is probably the rate‐determining step of this cross‐coupling hydrogen‐evolution transformation.  相似文献   

3.
Intrinsic photoinduced electron transfer (PET) rate constants ket, resorting to classically studied acceptor‐donor couples, are confronted to two theoretical models of electron transfer. At a very exergonic driving force, ket remains on a plateau value centered around 1011 s−1. It is shown that the well‐known and widely used Marcus theory fails to account for the data located on this plateau. On the contrary, the basically different approach of the intersecting‐state model (ISM) allows fitting the whole set of data with physically realistic parameters. The possibility is discussed that this success of the ISM over the Marcus model may give hints to explain the lack of an inverted region in forward PET in solution.  相似文献   

4.
The kinetics of proton transfer between poly(A—AH) (partially protonated double-stranded polyadenylic acid) and CPR (chlorophenol red), and between poly(C—H—C) (partially protonated double-stranded polycytidylic acid) and the indicators CPR, BCP (bromocresol purple), and BCG (bromocresol green) have been investigated at 25°C and ionic strength 0.1 M (NaClO4) by the temperature-jump method. The acidic proton of poly(C—H—C) is engaged in a hydrogen bond (N3H+––––N3) which is believed to contribute to stabilizing the double-strand conformation, whereas the acidic proton of poly(A—A—H) does not form hydrogen bonds. The analysis of the dependence of the relaxation times on the concentrations of the reactants has enabled the evaluation of the rate constants for the direct proton transfer and for the protolysis paths. The rate constants for proton recombination with the deprotonated forms of the polynucleotides and the indicators are of the order of magnitude expected for diffusion controlled processes involving oppositely charged ions (k2=(0.2−1.6)×1010 M−1s−1). The direct proton transfer from poly(C—H—C) to BCG is thermodynamically disfavored and its rate constant, k1, is lower than k2 by about three orders of magnitude. The (thermodynamically favored) proton transfers from poly(A—A—H) to CPR and from poly(C—H—C) to CPR and BCP are characterized by similar values of k1. This result indicates that the hydrogen bonds in poly(C—H—C) are very weak and suggests that the stabilization of the double-stranded conformation of this polynucleotide could be ascribed to the large number of hydrogen bonds rather than to their specific strength. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 161–169, 1998.  相似文献   

5.
Cobalt(diimine‐dioxime) complexes catalyze hydrogen evolution with low overpotentials and remarkable stability. In this study, DFT calculations were used to investigate their catalytic mechanism, to demonstrate that the initial active state was a CoI complex and that H2 was evolved in a heterolytic manner through the protonation of a CoII? hydride intermediate. In addition, these catalysts were shown to adjust their electrocatalytic potential for hydrogen evolution to the pH value of the solution and such a property was assigned to the presence of a H+‐exchange site on the oxime bridge. It was possible to establish that protonation of the bridge was directly involved in the H2‐evolution mechanism through proton‐coupled electron‐transfer steps. A consistent mechanistic scheme is proposed that fits the experimentally determined electrocatalytic and electrochemical potentials of cobalt(diimine‐dioxime) complexes and reproduces the observed positive shift of the electrocatalytic potential with increasing acidity of the proton source.  相似文献   

6.
A study of the kinetic salt effects on the oxidation of Ru(NH3)5pz2+ (Pirazinepentaammineruthenium (II)) with S2O82− (Peroxodisulphate) was carried out. The components of the experimental rate constant, kobs, were separated, and the true (unimolecular) electron transfer rate constant, ket, is (approximately) obtained. An analysis of the main parameters controlling the variations of ket, the free energies of reaction and reorganization, is made. Both parameters show a compensating behavior, so there are small variations of ket and kobs when salt concentrations change. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 485–490, 1999  相似文献   

7.
In many of the chemical steps in photosynthesis and artificial photosynthesis, proton coupled electron transfer (PCET) plays an essential role. An important issue is how excited state reactivity can be integrated with PCET to carry out solar fuel reactions such as water splitting into hydrogen and oxygen or water reduction of CO2 to methanol or hydrocarbons. The principles behind PCET and concerted electron–proton transfer (EPT) pathways are reasonably well understood. In Photosystem II antenna light absorption is followed by sensitization of chlorophyll P680 and electron transfer quenching to give P680+. The oxidized chlorophyll activates the oxygen evolving complex (OEC), a CaMn4 cluster, through an intervening tyrosine–histidine pair, YZ. EPT plays a major role in a series of four activation steps that ultimately result in loss of 4e?/4H+ from the OEC with oxygen evolution. The key elements in photosynthesis and artificial photosynthesis – light absorption, excited state energy and electron transfer, electron transfer activation of multiple-electron, multiple-proton catalysis – can also be assembled in dye sensitized photoelectrochemical synthesis cells (DS-PEC). In this approach, molecular or nanoscale assemblies are incorporated at separate electrodes for coupled, light driven oxidation and reduction. Separate excited state electron transfer followed by proton transfer can be combined in single semi-concerted steps (photo-EPT) by photolysis of organic charge transfer excited states with H-bonded bases or in metal-to-ligand charge transfer (MLCT) excited states in pre-associated assemblies with H-bonded electron transfer donors or acceptors. In these assemblies, photochemically induced electron and proton transfer occur in a single, semi-concerted event to give high-energy, redox active intermediates.  相似文献   

8.
The copper complex [(bztpen)Cu](BF4)2 (bztpen=N‐benzyl‐N,N′,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine) displays high catalytic activity for electrochemical proton reduction in acidic aqueous solutions, with a calculated hydrogen‐generation rate constant (kobs) of over 10000 s?1. A turnover frequency (TOF) of 7000 h?1 cm?2 and a Faradaic efficiency of 96 % were obtained from a controlled potential electrolysis (CPE) experiment with [(bztpen)Cu]2+ in pH 2.5 buffer solution at ?0.90 V versus the standard hydrogen electrode (SHE) over two hours using a glassy carbon electrode. A mechanism involving two proton‐coupled reduction steps was proposed for the dihydrogen generation reaction catalyzed by [(bztpen)Cu]2+.  相似文献   

9.
The heterogeneous reduction of nitrobenzene by thiophenol catalyzed by the dianionic bis(2‐sulfanyl‐2,2‐diphenylethanoxycarbonyl) dioxomolybdate(VI) complex, [MoVIO2(O2CC(S)(C6H5)2)2]2−, intercalated into a Zn(II)–Al(III) layered double hydroxide host [Zn3−xAlx(OH)6]x+, has been investigated under anaerobic conditions. Aniline was found to be the only product formed through a reaction consuming six moles of thiophenol for each mol of aniline produced. The kinetics of the system have been analyzed in detail. In excess of thiophenol, all reactions follow first‐order kinetics (ln([PhNO2]/[PhNO2]0) = −kappt) with the apparent rate constant kapp being a complex function of both initial nitrobenzene and thiophenol concentrations, as well as linearly dependent on the amount of solid catalyst used. A mechanism for this catalytic reaction consistent with the kinetic experiments as well as the observed properties of the intercalated molybdenum complex has thiophenol inducing the initial coupled proton–electron transfer steps to form an intercalated MoIV species, which is oxidized back to the parent MoVI complex by nitrobenzene via a two‐electron oxygen atom transfer reaction that yields nitrosobenzene. This mechanism is widespread in enzymatic catalysis and in model chemical reactions. The intermediate nitrosobenzene thus formed is reduced directly by excess thiophenol to aniline. The values of rate coefficients indicate that reduction of nitrobenzene proceeds much faster than proton‐assisted oxidation of thiophenol. This may account for the observation that the presence of protonic amberlite IR‐120(H) increases considerably the rate of the overall reaction catalyzed. Activation parameters in excess of the protonic resin and PhSH were ΔH = 80 kJ mol−1 and ΔS = −70 J mol−1 K−1. The large negative activation entropy is consistent with an associative transition state. The present system is characterized by a well‐defined catalytic cycle with multiple‐turnovers reductions of nitrobenzene to aniline without appreciable deactivation. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 212–224, 2001  相似文献   

10.
The effects of axial ligands on electron‐transfer and proton‐coupled electron‐transfer reactions of mononuclear nonheme oxoiron(IV) complexes were investigated by using [FeIV(O)(tmc)(X)]n+ ( 1 ‐X) with various axial ligands, in which tmc is 1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane and X is CH3CN ( 1 ‐NCCH3), CF3COO? ( 1 ‐OOCCF3), or N3? ( 1 ‐N3), and ferrocene derivatives as electron donors. As the binding strength of the axial ligands increases, the one‐electron reduction potentials of 1 ‐X (Ered, V vs. saturated calomel electrode (SCE)) are more negatively shifted by the binding of the more electron‐donating axial ligands in the order of 1 ‐NCCH3 (0.39) > 1 ‐OOCCF3 (0.13) > 1 ‐N3 (?0.05 V). Rate constants of electron transfer from ferrocene derivatives to 1 ‐X were analyzed in light of the Marcus theory of electron transfer to determine reorganization energies (λ) of electron transfer. The λ values decrease in the order of 1 ‐NCCH3 (2.37) > 1 ‐OOCCF3 (2.12) > 1 ‐N3 (1.97 eV). Thus, the electron‐transfer reduction becomes less favorable thermodynamically but more favorable kinetically with increasing donor ability of the axial ligands. The net effect of the axial ligands is the deceleration of the electron‐transfer rate in the order of 1 ‐NCCH3 > 1 ‐OOCCF3 > 1 ‐N3. In sharp contrast to this, the rates of the proton‐coupled electron‐transfer reactions of 1 ‐X are markedly accelerated in the presence of an acid in the opposite order: 1 ‐NCCH3 < 1 ‐OOCCF3 < 1 ‐N3. Such contrasting effects of the axial ligands on the electron‐transfer and proton‐coupled electron‐transfer reactions of nonheme oxoiron(IV) complexes are discussed in light of the counterintuitive reactivity patterns observed in the oxo transfer and hydrogen‐atom abstraction reactions by nonheme oxoiron(IV) complexes (Sastri et al. Proc. Natl. Acad. Sci. U.S.A. 2007 , 104, 19 181–19 186).  相似文献   

11.
A green synthesis of iron oxide nanoparticles (FeNPs) was developed using Murraya koenigii leaf extract as reducing and stabilizing agent. UV–vis spectra show that the absorption band centred at a wavelength of 277 nm which corresponds to the surface plasmon resonances of synthesized FeNPs. Fourier transform infrared spectroscopy spectrum exhibits that the characteristic band at 580 cm?1 is assigned to Fe–O of γ-Fe2O3. Transmission electron microscopy image confirms that the spherical with irregular shaped aggregates and average size of nanoparticles was found to be ~59 nm. The effect of synthesized FeNPs on fermentative hydrogen production was evaluated from glucose by Clostridium acetobutylicum NCIM 2337. The hydrogen yield in control experiment was obtained as 1.74?±?0.08 mol H2/mol glucose whereas the highest hydrogen yield in FeNPs supplemented experiment was achieved as 2.33?±?0.09 mol H2/mol glucose at 175 mg/L of FeNPs. In addition, the hydrogen content and hydrogen production rate were also increased from 34?±?0.8 to 52?±?0.8 % and 23 to 25.3 mL/h, respectively. The effect of FeNPs was compared with supplementation of FeSO4 on fermentative process. The supplementation of FeNPs enhanced the hydrogen production in comparison with control and FeSO4. The supplementation of FeNPs led to the change of the metabolic pathway towards high hydrogen production due to the enhancement of ferredoxin activity. The fermentation type was shifted from butyrate to acetate/butyrate fermentation type at the addition of FeNPs.  相似文献   

12.
曾和平 《中国化学》2002,20(10):1007-1011
Photoinduced electron transfer(PET) processes between C60-C6H8SO and Tetrathiafulvalene(TTF) have been studied by nanosecond laser photolysis.Quantrm yiekds(φet) and rate constants of electron transfer(ket) from TTF to excited triplet state of[60] fullerene-containing cyclic sulphoxide in benzonitrile(BN) have been evaluated by observing the transient absorption bands in the NIR region.With the decay of excited triplet state of [60]fullerene-containing cyclic suplhoxide,the rise of radical anion of [60]fullerene-containing cyclic sulphoxinde is observed.  相似文献   

13.
The kinetics of electron transfer reactions between [Fe(CN)6]4? and [Co(NH3)5pz]3+ and between [Ru(NH3)5pz]2+ and [Co(C2O4)3]3? was studied in concentrated salt solutions (Na2SO4, LiNO3, and Ca(NO3)2). An analysis of the experimental kinetic data, kobs, permits us to obtain the true (unimolecular) electron transfer rate constants corresponding to the true electron transfer process (precursor complex → successor complex), ket. The variations of both, kobs and ket, with salt concentrations are opposite for these reactions. These opposite tendencies can be rationalized by using the Marcus–Hush treatment for electron transfer reactions. The conclusion is that the negative salt effect found for the first reaction ([Fe(CN)6]4? + [Co(NH3)5pz]3+) is due to the increase of the reaction and reorganization free energies when the concentration of salt increases. In the case of the second reaction ([Ru(NH3)5pz]2+ + [Co(C2O4)3]3?), the positive salt effect observed is caused by the fact that the driving force becomes more favorable when the concentration of salt increases. Thus, it is shown that for anion/cation electron transfer reactions the kinetic salt effect depends on the charge sign of the oxidant (and the reductant). © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 37: 81–89, 2005  相似文献   

14.
Highly effective photocatalysts for the hydrogen‐evolution reaction were developed by conferring the linkers of NH2‐MIL‐125(Ti), a metal–organic framework (MOF) constructed from TiOx clusters and 2‐aminoterephthalic acid (linkers), with active copper centers. This design enables effective transfer of electrons from the linkers to the transient Cu2+/Cu+ centers, leading to 7000‐fold and 27‐fold increase of carrier density and lifetime of photogenerated charges, respectively, as well as high‐rate production of H2 under visible‐light irradiation. This work provides a novel design of a photocatalyst for hydrogen evolution using non‐noble Cu2+/Cu+ as co‐catalysts.  相似文献   

15.
To explore the structure–function relationships of cobalt complexes in the catalytic hydrogen evolution reaction (HER), we studied the substitution of a tertiary amine with a softer pyridine group and the inclusion of a conjugated bpy unit in a Co complex with a new pentadentate ligand, 6‐[6‐(1,1‐di‐pyridin‐2‐yl‐ethyl)‐pyridin‐2‐ylmethyl]‐[2,2′]bipyridinyl (Py3Me‐Bpy). These modifications resulted in significantly improved stability and activity in both electro‐ and photocatalytic HER in neutral water. [Co(Py3Me‐Bpy)(OH2)](PF6)2 catalyzes the electrolytic HER at ?1.3 V (vs. SHE) for 20 hours with a turnover number (TON) of 266 300, and photolytic HER for two days with a TON of 15 000 in pH 7 aqueous solutions. The softer ligand scaffold possibly provides increased stability towards the intermediate CoI species. DFT calculations demonstrate that HER occurs through a general electron transfer/proton transfer/electron transfer/proton transfer pathway, with H2 released from the protonation of CoII?H species.  相似文献   

16.
The dissociation pathways of protonated enaminones with different substituents were investigated by electrospray ionization tandem mass spectrometry (ESI‐MS/MS) in positive ion mode. In mass spectrometry of the enaminones, Ar? CO? CH?CH? N(CH3)2, the proton transfers from the thermodynamically favored site at the carbonyl oxygen to the dissociative protonation site at ipso‐position of the phenyl ring or the double bond carbon atom adjacent to the carbonyl leading to the loss of a benzene or elimination of C4H9N, respectively. And the hydrogen? deuterium (H/D) exchange between the added proton and the proton of the phenyl ring via a 1,4‐H shift followed by hydrogen ring‐walk was witnessed by the D‐labeling experiments. The elemental compositions of all the ions were confirmed by ultrahigh resolution Fourier transform ion cyclotron resonance tandem mass spectrometry (FTICR‐MS/MS). The enaminones studied here were para‐monosubstituted on the phenyl ring and the electron‐donating groups were in favor of losing the benzene, whereas the electron‐attracting groups strongly favored the competing proton transfer reaction leading to the loss of C4H9N to form a benzoyl cation, Ar‐CO+. The abundance ratios of the two competitive product ions were relatively well‐correlated with the σp+ substituent constants. The mechanisms of these reactions were further investigated by density functional theory (DFT) calculations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive hydrogen peroxide (H2O2) biosensor was developed based on a reduced graphene oxide|carbon ceramic electrode (RGO|CCE) modified with cadmium sulfide‐hemoglobin (CdS‐Hb). The electron transfer kinetics of Hb were promoted due to the synergetic function of RGO and CdS nanoparticles. The transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) were calculated to be 0.54 and 2.6 s?1, respectively, indicating a great facilitation achieved in the electron transfer between Hb and the electrode surface. The biosensor showed a good linear response to the reduction of H2O2 over the concentration range of 2–240 µM with a detection limit of 0.24 µM (S/N=3) and a sensitivity of 1.056 µA µM?1 cm?2. The high surface coverage of the CdS‐Hb modified RGO|CCE (1.04×10?8 mol cm?2) and a smaller value of the apparent Michaelis? Menten constant (0.24 mM) confirmed excellent loading of Hb and high affinity of the biosensor for hydrogen peroxide.  相似文献   

18.
Based on the immobilization of horseradish peroxidase (HRP) in chitosan(CS) on a glassy carbon electrode (GCE) modified with the Au‐Pt alloy nanoparticles (NPs) / polyaniline nanotube (nanoPAN) nanocomposite film, a novel hydrogen peroxide biosensor was constructed. The modified processes of GCE were monitored by cyclic voltammetry and electrochemical impedance spectroscopy. Au‐PtNPs/nanoPAN/CS had a better synergistic electrochemical effect than did AuNPs/nanoPAN/CS or PtNPs/nanoPAN/CS. The amperometric response of the biosensor towards H2O2 was investigated by successively adding aliquots of H2O2 to a continuous stirring phosphate buffer solution under the optimized conditions. Because Au‐PtNPs have unique catalytic properties and good biocompatibility, and especially Au‐PtNPs and nanoPAN have synergistic augmentation for facilitating electron‐transfer, the biosensor displayed a fast response time (<2 s) and broad linear response to H2O2 in the range from 1.0 to 2200 μmol L?1 with a relatively low detection limit of 0.5 μmol L?1 at 3 times the background noise. Moreover, the biosensor can be applied in practical analysis and exhibited high sensitivity, good reproducibility, and long‐term stability.  相似文献   

19.
The electron and proton transfer in phenol‐imidazole‐base systems (base = NH2? or OH?) were investigated by density‐functional theory calculations. In particular, the role of bridge imidazole on the electron and proton transfer was discussed in comparison with the phenol‐base systems (base = imidazole, H2O, NH3, OH?, and NH2?). In the gas phase phenol‐imidazole‐base system, the hydrogen bonding between the phenol and the imidazole is classified as short strong hydrogen bonding, whereas that between the imidazole and the base is a conventional hydrogen bonding. The n value in spn hybridization of the oxygen and carbon atoms of the phenolic CO sigma bond was found to be closely related to the CO bond length. From the potential energy surfaces without and with zero point energy correction, it can be concluded that the separated electron and proton transfer mechanism is suitable for the gas‐phase phenol‐imidazole‐base triads, in which the low‐barrier hydrogen bond is found and the delocalized phenolic proton can move freely in the single‐well potential. For the gas‐phase oxidized systems and all of the triads in water solvent, the homogeneous proton‐coupled electron transfer mechanism prevails. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

20.
There is a demand to develop molecular catalysts promoting the hydrogen evolution reaction (HER) with a high catalytic rate and a high tolerance to various inhibitors, such as CO and O2. Herein we report a cobalt catalyst with a penta‐dentate macrocyclic ligand ( 1‐Co ), which exhibits a fast catalytic rate (TOF=2210 s?1) in aqueous pH 7.0 phosphate buffer solution, in which proton transfer from a dihydrogen phosphate anion (H2PO4?) plays a key role in catalytic enhancement. The electrocatalyst exhibits a high tolerance to inhibitors, displaying over 90 % retention of its activity under either CO or air atmosphere. Its high tolerance to CO is concluded to arise from the kinetically labile character of undesirable CO‐bound species due to the geometrical frustration posed by the ligand, which prevents an ideal trigonal bipyramid being established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号