首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation reaction of M(tpfc) [M = Mn or Cr and tpfc = tris(pentafluorophenyl)corrole] with aryl azides under photolytic or thermal conditions gives the first examples of mononuclear imido complexes of manganese(V) and chromium(V). These complexes have been characterized by NMR, mass spectrometry, UV-vis, EPR, elemental analysis, and cyclic voltammetry. Two X-ray structures have been obtained for Mn(tpfc)(NMes) and Cr(tpfc)(NMes) [Mes = 2,4,6-(CH(3))(3)C(6)H(2)]. Short metal-imido bonds (1.610 and 1.635 Angstroms) as well as nearly linear M-N-C angles are consistent with triple M triple-bond NR bond formation. The kinetics of nitrene [NR] group transfer from manganese(V) corroles to various organic phosphines have been defined. Reduction of the manganese(V) corrolato complex affords phosphine imine and Mn(III) with reaction rates that are sensitive to steric and electronic elements of the phosphine substrate. An analogous manganese complex with a variant corrole ligand containing bromine atoms in the beta-pyrrole positions, Mn(Br(8)tpfc)(NAr), has been prepared and studied. Its reaction with PEt(3) is 250x faster than that of the parent tpfc complex, and its Mn(V/IV) couple is shifted by 370 mV to a more positive potential. The EPR spectra of chromium(V) imido corroles reveal a rich signal at ambient temperature consistent with Cr(V) triple-bond NR (d(1), S = 1/2) containing a localized spin density in the d(xy) orbital, and an anisotropic signal at liquid nitrogen temperature. Our results demonstrate the synthetic utility of organic aryl azides in the preparation of mononuclear metal imido complexes previously considered elusive, and suggest strong sigma-donation as the underlying factor in stabilizing high-valent metals by corrole ligands.  相似文献   

2.
Zdilla MJ  Abu-Omar MM 《Inorganic chemistry》2008,47(22):10718-10722
Hydrogen atom transfer (HAT) reactions from dihydroanthracene to ArINTs (Ar = 2- tert-butylsulfonyl)benzene and Ts = p-toluenesulfonyl) is catalyzed by Mn(tpfc) (tpfc = 5,10,15-tris(pentafluorophenyl)corrole). Kinetics of HAT was monitored by gas chromatography. Conversion to the major products anthracene, TsNH 2, and ArI is too fast to be explained by direct HAT from the terminal imido complex TsN=Mn(tpfc), which forms from the reaction of Mn(tpfc) with ArINTs. Steady-state kinetics, isotope effects, and variation of the initial catalyst form (Mn (III)(tpfc) vs TsN=Mn (V)(tpfc)) support a mechanism in which the active catalytic species is an adduct of manganese(III) with the oxidant, (ArINTs)Mn (III)(tpfc). This species was detected by rapid-scan stopped-flow absorption spectroscopy. Kinetic simulations demonstrated the viability of this mechanism in contrast to other proposals.  相似文献   

3.
Hydrogen atom transfer (HAT) reactions of (tpfc)MnNTs have been investigated (tpfc = 5,10,15-tris(pentafluorophenyl)corrole and Ts = p-toluenesulfonate). 9,10-Dihydroanthracene and 1,4-dihydrobenzene reduce (tpfc)MnNTs via HAT with second-order rate constants 0.16 +/- 0.03 and 0.17 +/- 0.01 M(-1) s(-1), respectively, at 22 degrees C. The products are the respective arenes, TsNH(2) and (tpfc)Mn(III). Conversion of (tpfc)MnNTs to (tpfc)Mn by reaction with dihydroanthracene exhibits isosbestic behavior, and formation of 9,9',10,10'-tetrahydrobianthracene is not observed, suggesting that the intermediate anthracene radical rebounds in a second fast step without accumulation of a Mn(IV) intermediate. The imido complex (tpfc)Mn(V)NTs abstracts a hydrogen atom from phenols as well. For example, 2,6-di-tert-butyl phenol is oxidized to the corresponding phenoxyl radical with a second-order rate constant of 0.32 +/- 0.02 M(-1) s(-1) at 22 degrees C. The other products from imido manganese(V) are TsNH(2) and the trivalent manganese corrole. Unlike reaction with dihydroarenes, when phenols are used isosbestic behavior is not observed, and formation of (tpfc)Mn(IV)(NHTs) is confirmed by EPR spectroscopy. A Hammett plot for various p-substituted 2,6-di-tert-butyl phenols yields a V-shaped dependence on sigma, with electron-donating substituents exhibiting the expected negative rho while electron-withdrawing substituents fall above the linear fit (i.e., positive rho). Similarly, a bond dissociation enthalpy (BDE) correlation places electron-withdrawing substituents above the well-defined negative slope found for the electron-donating substituents. Thus two mechanisms are established for HAT reactions in this system, namely, concerted proton-electron transfer and proton-gated electron transfer in which proton transfer is followed by electron transfer.  相似文献   

4.
The reaction of Arl=NTs (Ar = 2-(tert-butylsulfonyl)benzene and Ts = p-toluenesulfonyl) and (tpfc)Mn (tpfc=5,10,15-tris(pentafluorophenyl)corrole), 1, affords the high-valent (tpfc)MnV=NTs, 2, on stopped-flow time scale. The reaction proceeds via the adduct [(tpfc)MnIII(ArINTs)], 3, with formation constant K3 = (10 +/- 2) x 10(3) L mol-1. Subsequently, 3 undergoes unimolecular group transfer to give complex 2 with the rate constant k4 = 0.26 +/- 0.07 s-1 at 24.0 degrees C. The complex (tpfc)Mn catalyzes [NTs] group transfer from ArINTs to styrene substrates with low catalyst loading and without requirement of excess olefin. The catalytic aziridination reaction is most efficient in benzene because solvents such as toluene undergo a competing hydrogen atom transfer (HAT) reaction resulting in H2NTs and lowered aziridine yields. The high-valent manganese imido complex (tpfc)Mn=NTs does not transfer its [NTs] group to styrene. Double-labeling experiments with ArINTs and ArINTstBu (TstBu = (p-tert-butylphenyl)sulfonyl) establish the source of [NR] transfer as a "third oxidant", which is an adduct of Mn(V) imido, [(tpfc)Mn(NTstBu)(ArINTs)](4). Formation of this oxidant is rate limiting in catalysis.  相似文献   

5.
The manganese(V) imido complex [(TBP8Cz)Mn(V)(NMes)] (2) was synthesized from the Mn(III) complex [(TBP8Cz)Mn(III)] (1) and thermolysis of mesityl azide. An X-ray structure of 2 reveals a short Mn-N distance [1.595(4) A], consistent with the Mn-N triple bond expected for a manganese(V) imido species. This high-valent species is remarkably inert to one- and two-electron reductive processes such as NR group transfer to alkenes or H-atom abstraction from O-H bonds. Electrochemical studies support this lack of reactivity. In contrast, oxidation of 2 is easily accomplished by treatment with [(4-BrC6H4)3N]*+SbCl6, giving a pi-radical-cation complex.  相似文献   

6.
The interaction of a water-soluble sulfonated Mn(III) corrole Mn(tpfc)(SO3Na)2 [tpfc = 5,10,15-tris(pentafluorophenyl)corrole] with calf thymus DNA (ct-DNA) has been studied by spectroscopic methods, and the nuclease activity of this complex has also been examined by agarose gel electrophoresis. Mn(tpfc)(SO3Na)2 exhibits weak aggregation tendency in buffer solution and can bind to ct-DNA via an outside binding mode with a binding constant of 1.25 × 104 M?1. The observed increase in Stern–Volmer quenching constant with increasing temperature indicates that the competition of the manganese corrole and ethidium bromide with ct-DNA is a dynamic process. Moreover, the manganese corrole displays good chemical nuclease activity in the presence of hydrogen peroxide via oxidative cleavage of DNA.  相似文献   

7.
对5,10,15-三(五氟苯基)-Corrole(tpfc)Mn(V)≡O配合物的稳定性进行了研究. 以二氯甲烷溶剂为参考,乙醇、正辛醇、乙醚、四氢呋喃、二甲基亚砜、甲苯能加速(tpfc)MnV≡O的衰减,而N’N二甲基甲酰胺、水、乙酸乙酯、丙酮能减缓(tpfc)MnV≡O的衰减. (tpfc)MnV≡O与盐酸、醋酸反应生成(tpfc)MnIV-Cl、(tpfc)MnIV-O2CCH3. (tpfc)MnIII能与咪唑、四甲基咪唑、吡啶形成1:1的配合物,轴向配位常数按Imidazole >4-Methylimidazole >Py顺次减弱,在这些轴向配体存在时,(tpfc)MnV≡O的稳定性显著降低. 轴向配体与(tpfc)MnIII的结合导致其MnIII/MnIV半波电位降低. XPS实验结果显示(tpfc)MnIII与轴向配体结合后,其中心金属锰的结合能Mn2p3/2减少,减少程度与轴向配体的给电子能力有关.  相似文献   

8.
The investigations of complete nitrogen atom transfer reactions from (nitrido)manganese(V) salen to manganese(III) complexes of porphyrins and corroles revealed that stabilization of the [Mn(N)]2+ moiety is in the order of corrole > porphyrin > salen. The first kinetic examination of this quite fundamental reaction exposed a large solvent effect on both the enthalpy and entropy activation energies. Oxidation of the (nitrido)manganese(V) corroles leads to the first (nitrido)manganese(VI) complexes that are coordinated by tetrapyrrolic ligands.  相似文献   

9.
The aim of this research was to prepare mononuclear ruthenium corroles, because of the well-documented potency of analogous porphyrin complexes in catalysis. The syntheses of the mononuclear nitrosyl complexes [Ru(tpfc)(NO)] and [Ru(tdcc)(NO)] (tpfc=trianion of 5,10,15-tris(pentafluorophenyl)corrole, tdcc=trianion of 5,10,15-tris(2,6-dichlorophenyl)corrole), and of the binuclear [[Ru(tpfc)](2)] were achieved by using [[Ru(cod)Cl(2)](x)] (cod=cyclooctadiene) as the metal source. The NMR spectra of all three complexes clearly demonstrate that they are diamagnetic; this is consistent with a triple bond between the metal ions in [[Ru(tpfc)](2)] and is expected for classical [MNO](6) complexes. These features were further substantiated by the stretching frequencies of the [MNO] moieties, electrochemical measurements on all complexes, and the X-ray crystal structures of [Ru(tpfc)(NO)] and [[Ru(tpfc)](2)]. A comparison of the spectroscopic and structural characteristics of these new complexes with analogous iron corroles, as well as with iron and ruthenium porphyrins, suggests that it will be hard to obtain mononuclear ruthenium corroles without pi-accepting ligands.  相似文献   

10.
Corrole-manganese(V)-oxo intermediates were produced by laser flash photolysis of the corresponding corrole-manganese(IV) chlorate complexes, and the kinetics of their decay reactions in CH2Cl2 and their reactions with organic reductants were studied. The corrole ligands studied were 5,10,15-tris(pentafluorophenyl)corrole (H3TPFC), 5,10,15-triphenylcorrole (H3TPC), and 5,15-bis(pentafluorophenyl)-10-(p-methoxyphenyl)corrole (H3BPFMC). In self-decay reactions and in reactions with substrates, the order of reactivity of (Cor)Mn(V)(O) was TPC > BPFMC > TPFC, which is inverted from that expected based on the electron-demand of the ligands. The rates of reactions of (Cor)Mn(V)(O) were dependent on the concentration of the oxidant and other manganese species, with increasing concentrations of various manganese species resulting in decreasing rates of reactions, and the apparent rate constant for reaction of (TPFC)Mn(V)(O) with triphenylamine was found to display fractional order with respect to the manganese-oxo species. The kinetic results are consistent in part with a reaction model involving disproportionation of (Cor)Mn(V)(O) to give (Cor)Mn(IV) and (Cor)Mn(VI)(O) species, the latter of which is the active oxidant. Alternatively, the results are consistent with oxidation by (Cor)Mn(V)(O) which is reversibly sequestered in non-reactive complexes by various manganese species.  相似文献   

11.
采用密度泛函理论(DFT)的B3LYP方法对反式双氧锰(V)咔咯配合物阴离子的稳定性及其质子化物种进行了理论计算. 结果表明: 反式双氧锰(V)咔咯配合物阴离子构型稳定, 其反式双氧锰键O=Mn=O由锰原子的d轨道与两个氧原子的p轨道分别构成一个σ轨道和两个π轨道; 随着外围取代基吸电性增强, O=Mn=O键长缩短, 拉曼伸缩振动频率增大; 其质子化过程中得到两个质子的轴向氧原子与锰原子的距离超出正常化学键的范围, 从而形成水分子并脱离原来分子, 导致质子化行为是不可逆过程, 而形成单氧的咔咯锰(V)-氧配合物.  相似文献   

12.
用密度泛函理论(DFT)方法对一系列A3型咔咯锰(V)氧配合物进行了理论计算. 结果表明: 咔咯锰(V)-氧配合物中Mn―O键是由1 个σ键和2 个π键构成的叁键结构; 当咔咯中位取代基由推电子过渡到拉电子性质时, 咔咯骨架紧缩, Mn―O键缩短, 其拉曼光谱的伸缩振动峰往高波数移动; 取代基与氧原子的静电作用模式由正-负吸引转化为负-负排斥, 导致Mn―O键解离能ΔE减少, 即拉电子基团有利于增强咔咯锰(V)-氧配合物氧原子的活泼性.  相似文献   

13.
Manganese(V)-oxo corrole and corrolazine have been studied with ab initio multiconfiguration reference methods (CASPT2 and RASPT2) and large atomic natural orbital (ANO) basis sets. The calculations confirm the expected singlet d(δ)(2) ground states for both complexes and rule out excited states within 0.5 eV of the ground states. The lowest excited states are a pair of Mn(V) triplet states with d(δ)(1)d(π)(1) configurations 0.5-0.75 eV above the ground state. Manganese(IV)-oxo macrocycle radical states are much higher in energy, ≥1.0 eV relative to the ground state. The macrocyclic ligands in the ground states of the complexes are thus unambiguously 'innocent'. The approximate similarity of the spin state energetics of the corrole and corrolazine complexes suggests that the latter macrocycle on its own does not afford any special stabilization for the Mn(V)O center. The remarkable stability of an Mn(V)O octaarylcorrolazine thus appears to be ascribable to the steric protection afforded by the β-aryl groups.  相似文献   

14.
The reactions of manganese(III) porphyrin complexes with terminal oxidants, such as m-chloroperbenzoic acid, iodosylarenes, and H(2)O(2), produced high-valent manganese(V)-oxo porphyrins in the presence of base in organic solvents at room temperature. The manganese(V)-oxo porphyrins have been characterized with various spectroscopic techniques, including UV-vis, EPR, 1H and 19F NMR, resonance Raman, and X-ray absorption spectroscopy. The combined spectroscopic results indicate that the manganese(V)-oxo porphyrins are diamagnetic low-spin (S = 0) species with a longer, weaker Mn-O bond than in previously reported Mn(V)-oxo complexes of non-porphyrin ligands. This is indicative of double-bond character between the manganese(V) ion and the oxygen atom and may be attributed to the presence of a trans axial ligand. The [(Porp)Mn(V)=O](+) species are stable in the presence of base at room temperature. The stability of the intermediates is dependent on base concentration. In the absence of base, (Porp)Mn(IV)=O is generated instead of the [(Porp)Mn(V)=O](+) species. The stability of the [(Porp)Mn(V)=O](+) species also depends on the electronic nature of the porphyrin ligands: [(Porp)Mn(V)=O](+) complexes bearing electron-deficient porphyrin ligands are more stable than those bearing electron-rich porphyrins. Reactivity studies of manganese(V)-oxo porphyrins revealed that the intermediates are capable of oxygenating PPh(3) and thioanisoles, but not olefins and alkanes at room temperature. These results indicate that the oxidizing power of [(Porp)Mn(V)=O](+) is low in the presence of base. However, when the [(Porp)Mn(V)=O](+) complexes were associated with iodosylbenzene in the presence of olefins and alkanes, high yields of oxygenated products were obtained in the catalytic olefin epoxidation and alkane hydroxylation reactions. Mechanistic aspects, such as oxygen exchange between [(Porp)Mn(V)=16O](+) and H(2)(18)O, are also discussed.  相似文献   

15.
Reductive demetalation of manganese corroles: The substituent effect   总被引:1,自引:0,他引:1  
The reductive demetalation of manganese corroles was investigated in CH2Cl2/HCl (aqueous) solvent by using SnCl2 as reducing agent. It was found that the demetalation yields depend on the substituents of corrole macrocycle significantly. Electron- rich manganese corrole undergoes reductive demetalation more easily than electron-deficient ones. The isolated reductive demetalation yield of manganese 5,10,15-tris(phenyl)corrole in present system is moderate (46%). As for electron-deficient Mn(Ⅲ) 5,10,15-tris(pentafluorophenyl)corrole, the acid-induced demetalation in HOAc-HESO4 (V/V = 3:1) is preferable with an isolated yield of 67%.  相似文献   

16.
A series of manganese(III) corroles were investigated as to their electrochemistry and spectroelectrochemistry in nonaqueous solvents. Up to three oxidations and one reduction were obtained for each complex depending on the solvents. The main compound discussed in this paper is the meso-substituted manganese corrole, (Mes 2PhCor)Mn, and the main points are how changes in axially coordinated anion and solvent will affect the redox potentials and UV-vis spectra of each electrogenerated species in oxidation states of Mn(III), Mn(IV), or Mn(II). The anions OAc (-), Cl (-), CN (-), and SCN (-) were found to form five-coordinate complexes with the neutral Mn(III) corrole while two OH (-) or F (-) anions were shown to bind axially in a stepwise addition to give the five- and six-coordinate complexes in nonaqueous media. In each case, complexation with one or two anionic axial ligands led to an easier oxidation and a harder reduction as compared to the uncomplexed four-coordinate species.  相似文献   

17.
采用密度泛函理论(DFT)的BP86方法对含氮配体咪唑、甲基咪唑、异丙基咪唑和吡啶与5,10,15-三(五氟苯基)咔咯锰[(TPFC)Mn]和5,10,15-三(五氟苯基)咔咯锰氧[(TPFC)MnVO]的轴向配位性质进行理论研究.计算结果表明配体能与五重态下的(TPFC)Mn形成有效的轴向配位作用,结合能绝对值次序为:咪唑>4-甲基咪唑>吡啶,与实验结果一致. 另外,结合能和轴向配位键长数据显示,这些配体不能与基态(单重态)或三重态(TPFC)MnVO中的MnV原子形成有效的轴向配位作用,自然键轨道(NBO)分析表明其MnV没有空的3d 轨道来接受配体的孤对电子,但配体可与三重态下的(TPFC)MnVO形成弱的配位作用.  相似文献   

18.
采用密度泛函B3LYP方法研究了咔咯锰(Ⅲ)配合物催化水解断裂RNA磷酸二酯类似物2-羟丙基-4-硝基苯基磷酸酯(HpPNP)的反应机理以及中位取代基的性质和数目对反应能垒的影响。计算结果表明:断裂反应以特殊碱催化(SBC)机理进行,咔咯锰(Ⅲ)配合物与HpPNP形成双氢键和双配位独特的过渡态结构,经由P-O键断裂后形成产物。与无催化剂时相比,带吸电子取代基的咔咯锰(Ⅲ)配合物的催化能使反应能垒下降4%~34%。咔咯锰(Ⅲ)配合物中位的吸电子取代基效应能显著降低反应能垒,促进水解断裂反应的进行。  相似文献   

19.
Non-heme manganese and iron complexes with terminal hydroxo or oxo ligands are proposed to mediate the transfer of hydrogen atoms in metalloproteins. To investigate this process in synthetic systems, the monomeric complexes [M(III/II)H(3)1(OH)](-/2-) and [M(III)H(3)1(O)](2-) have been prepared, where M(III/II) = Mn and Fe and [H(3)1](3-) is the tripodal ligand, tris[(N'-tert-butylureaylato)-N-ethyl)]aminato. These complexes have similar primary and secondary coordination spheres, which are enforced by [H(3)1](3-). The homolytic bond dissociation energies (BDEs(O-H)) for the M(III/II)-OH complexes were determined, using experimentally obtained values for the pK(a)(M-OH) and E(1/2) measured in DMSO. This thermodynamic analysis gave BDEs(O-H) of 77(4) kcal/mol for [Mn(II)H(3)1(O-H)](2-) and 66(4) kcal/mol for [Fe(II)H(3)1(O-H)](2-). For the M(III)-OH complexes, [Mn(III)H(3)1(OH)]- and [Fe(III)H(3)1(OH)]-, BDEs(O-H) of 110(4) and 115(4) kcal/mol were obtained. These BDEs(O-H) were verified with reactivity studies with substrates having known X-H bond energies (X = C, N, O). For instance, [Fe(II)H(3)1(OH)](2-) reacts with a TEMPO radical to afford [Fe(III)H(3)1(O)](2-) and TEMPO-H in isolated yields of 60 and 75%, respectively. Consistent with the BDE(O-H) values for [Mn(II)H(3)1(OH)](2-), TEMPO does not react with this complex, yet TEMPO-H (BDE(O-H) = 70 kcal/mol) reacts with [Mn(III)H(3)1(O)](2-), forming TEMPO and [Mn(II)H(3)1(OH)](2-). [Mn(III)H(3)1(O)](2-) and [Fe(III)H(3)1(O)](2-) react with other organic substrates containing C-H bonds less than 80 kcal/mol, including 9,10-dihydroanthracene and 1,4-cyclohexadiene to produce [M(II)H(3)1(OH)](2-) and the appropriate dehydrogenated product in yields of greater than 80%. Treating [Mn(III)H(3)1(O)](2-) and [Fe(III)H(3)1(O)](2-) with phenolic compounds does not yield the product expected from hydrogen atom transfer but rather the protonated complexes, [Mn(III)H(3)1(OH)]- and [Fe(III)H(3)1(OH)]-, which is ascribed to the highly basic nature of the terminal oxo group.  相似文献   

20.
A single‐chain magnet (SCM) was constructed from manganese(III) 5,10,15‐tris(pentafluorophenyl)corrole complex [MnIII(tpfc)] through supramolecular π–π stacking without bridging ligands. In the crystal structures, [Mn(tpfc)] molecules crystallized from different solvents, such as methanol, ethyl acetate, and ethanol, exhibit different molecular orientations and intermolecular π–π interaction or weak Mn ??? O interaction to form a supramolecular one‐dimensional motif or dimer. These three complexes show very different magnetic behaviors at low temperature. Methanol solvate 1 shows obvious frequency dependence of out‐of‐phase alternating‐current magnetic susceptibility below 2 K and a magnetization hysteresis loop with a coercive field of 400 Oe at 0.5 K. It is the first example of spin‐canted supramolecular single‐chain magnet due to weak π–π stacking interaction. By fitting the susceptibility data χMT (20–300 K) of 1 with the spin Hamiltonian expression ${\overrightarrow{H}}A single-chain magnet (SCM) was constructed from manganese(III) 5,10,15-tris(pentafluorophenyl)corrole complex [Mn(III) (tpfc)] through supramolecular π-π stacking without bridging ligands. In the crystal structures, [Mn(tpfc)] molecules crystallized from different solvents, such as methanol, ethyl acetate, and ethanol, exhibit different molecular orientations and intermolecular π-π interaction or weak Mn???O interaction to form a supramolecular one-dimensional motif or dimer. These three complexes show very different magnetic behaviors at low temperature. Methanol solvate 1 shows obvious frequency dependence of out-of-phase alternating-current magnetic susceptibility below 2?K and a magnetization hysteresis loop with a coercive field of 400?Oe at 0.5?K. It is the first example of spin-canted supramolecular single-chain magnet due to weak π-π stacking interaction. By fitting the susceptibility data χ(M) T (20-300?K) of 1 with the spin Hamiltonian expression H = -2J Σ(i=1)(n-1) S(Ai) S(Ai+1) + D Σ(i) S((iZ)(2)), the intrachain magnetic coupling parameter transmitted by π-π interaction of -0.31?cm(-1) and zero field splitting parameter D of -2.59?cm(-1) are obtained. Ethyl acetate solvate 2 behaves as an antiferromagnetic chain without ordering or slow magnetic relaxation down to 0.5?K. The magnetic susceptibility data χ(M) T (20-300?K) of 2 was fitted by assuming the spin Hamiltonian H = -2JΣ(i=1)(n-1) S(Ai) S(Ai+1), and the intrachain antiferromagnetic coupling constant of -0.07?cm(-1) is much weaker than that of 1. Ethanol solvate 3 with a dimer motif shows field-induced single-molecule magnet like behavior below 2.5?K. The exchange coupling constant J within the dimer propagated by π-π interaction is -0.14?cm(-1) by fitting the susceptibility data χ(M) T (20-300?K) with the spin Hamiltonian H = -2J S(A) S(B) + β(S((A)g(A)) + S((B)g(B)))H. The present studies open a new way to construct SCMs from anisotropic magnetic single-ion units through weak intermolecular interactions in the absence of bridging ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号