首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long alpha-Fe(2)O(3) hollow fibers have been prepared through a facile sol-gel combined co-electrospinning technique using ferric citrate as precursor, and alpha-Fe and gamma-Fe(2)O(3) hollow fibers have been obtained by reduction and reoxidation at different conditions. The outer diameter of the as-prepared hollow fibers is 0.5-5 microm with wall thickness of 200-800 nm. The obtained tubular fibers were characterized by thermal gravimetric (TG), FT-IR spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman techniques. In addition, magnetic properties of alpha-Fe and gamma-Fe(2)O(3) hollow fibers have also been investigated.  相似文献   

2.
Exchange-coupled fct-FePd/alpha-Fe nanocomposite magnets were fabricated by converting anisotropically phase-segregated Pd/gamma-Fe2O3 nanoparticles via the interfacial atom diffusion. The magnetically hard fct-FePd phases formed by the interdiffusion between alpha-Fe and fcc-Pd phases nearly preserve their sizes at the nanometer scale because they are surrounded by the alpha-Fe matrix. The VSM measurements reveal that the exchange coupling between the soft and hard phases has been realized.  相似文献   

3.
Polymer coated superparamagnetic gamma-Fe(2)O(3) nanoparticles were derivatized with a synthetic double-stranded RNA [poly(IC)], a known allosteric activator of the latent (2-5)A synthetase, to separate a single 35 kDa protein from a crude extract which cross reacted with antibodies raised against the sponge enzyme.  相似文献   

4.
Uniform quasicubic alpha-Fe(2)O(3) nanoparticles enclosed by six identical {110} planes were synthesized by a simple solvothermal method. TEM investigations revealed that they were formed through oriented attachment of primary nanocrystals assisted by Ostwald ripening, and PVP surfactant played an important role in control over the final morphology of the products. These quasicubic nanoparticles could catalyze oxidation of almost 100% CO at a temperature of 230 degrees C, much lower than those of nanophases with flowerlike, hollow, or other forms of irregular external morphologies having various crystal planes exposed to the gas, indicating that the external morphology and especially the exposure crystal planes of alpha-Fe(2)O(3) nanocatalyst affect the catalytic activity more significantly than the traditionally accepted factors (such as high BET surface area, hollow structure, etc.) do for CO catalytic oxidation.  相似文献   

5.
Core(Cr)/shell(gamma-Fe(2)O(3)) nanoparticles were synthesized by mixing Fe(CO)(5) and Cr(CO)(6) in the 9:1 ratio. These particles exhibit narrow size distribution with 13.5 nm as mean diameter and uniform spherical shape. The TEM image, which is in good agreement with the synchrotron powder XRD pattern, reveals the heterogeneous nature (core/shell structure). The analysis of the pattern reveals gamma-Fe(2)O(3) structure and a metal crystal structure. Mossbauer spectra, which support the superparamagnetic behavior determined by H-M measurement, do not show any traceable amount of Fe(0). This suggests that the metal component is Cr. EELS analysis and iron mapping suggest controlled stoichiometry and also confirm a core made of Cr and a shell made of gamma-Fe(2)O(3).  相似文献   

6.
We describe a simple and robust approach to fabricating an alpha-Fe2O3 switchable surface. The hydrophobicity of alpha-Fe2O3 nanostructures was observed for the first time. A remarkable surface wettability transition can be easily achieved by ultraviolet (UV) illumination. The distinctive properties of surface defects are disclosed by X-ray photoelectron spectroscopy (XPS) analysis. The nanoscale adsorption and photocatalytic properties of Fe2+ defects account for the highly amphiphilic character of the surfaces. We believe that the experiment will further the molecular-scale understanding and manipulation of the wetting behavior on smart devices.  相似文献   

7.
We report the stability and enzymatic activity of Candida rugosa Lipase (E.C.3.1.1.3) immobilized on gamma-Fe2O3 magnetic nanoparticles. The immobilization strategies were either reacting the enzyme amine group with a nanoparticle surface acetyl, or amine groups. In the former, the enzyme was attached through a C=N bond, while in the latter it was connected using glutaraldehyde. AFM images show an average particle size of 20 +/- 10 nm after deconvolution. The enzymatic activity of the immobilized lipase was determined by following the ester cleavage of p-nitrophenol butyrate. The covalently immobilized enzyme was stabile and reactive over 30 days.  相似文献   

8.
Tang B  Wang G  Zhuo L  Ge J  Cui L 《Inorganic chemistry》2006,45(13):5196-5200
alpha-FeOOH nanorods with diameters of 15-25 nm and lengths up to 170-300 nm were synthesized in high yield via a facile and template-free hydrothermal method at low temperature. After calcining the as-synthesized alpha-FeOOH at 250 degrees C for 2 h, we could obtain alpha-Fe2O3 nanorods. Interestingly, the as-obtained alpha-Fe2O3 nanorods exhibited weakly ferromagnetic characteristics at low temperature and superparamagnetic property at room temperature, which is different from the behavior of the corresponding bulk material.  相似文献   

9.
In the present study we report a facile and reproducible method of preparing magnetic thermosensitive hybrid material based on P(NIPAM) microgels covered with gamma-Fe2O3 nanoparticles of 6-nm size. The iron oxide nanoparticles provided magnetic response to the microgels. In addition, the presence of the magnetic nanoparticles on the microgels altered their swelling behavior and shifted their volume phase transition temperature to higher values. In particular, for inorganic shells with 18% (w/w) of magnetic nanoparticles the volume phase transition of the microgels was shifted from 36 to 40 degrees C. In contrast, for shells consisting of 38% (w/w) magnetic nanoparticles the volume phase transition of the microgels was almost blocked, thus indicating that the microgel thermal response was strongly affected by the presence of the inorganic nanoparticles. The synthesized thermosensitive magnetic microgels are envisaged to be ideal for potential applications as thermosensitive targeted drug delivery systems.  相似文献   

10.
The adsorption of Co2+ ions from nitrate solutions using iron oxide nanoparticles of magnetite (Fe3O4) and maghemite (gamma-Fe2O3) has been studied. The adsorption of Co2+ ions on the surface of the particles was investigated under different conditions of oxide content, contact time, solution pH, and initial Co2+ ion concentration. It has been found that the equilibrium can be attained in less than 5 min. The maximum loading capacity of Fe3O4 and gamma-Fe2O3 nanoparticles is 5.8 x 10(-5) and 3.7 x 10(-5) mol m(-2), respectively, which are much higher than the previously studied, iron oxides and conventional ion exchange resins. Co2+ ions were also recovered by dilute nitric acid from the loaded gamma-Fe2O3 and Fe3O4 with an efficiency of 86 and 30%, respectively. That has been explained by the different mechanisms by including both the surface and structural loadings of Co2+ ions. The surface adsorption of Co2+ on Fe3O4 and gamma-Fe2O3 nanoparticles has been found to have the same mechanism of ion exchange reaction between Co2+ in the solution and proton bonded on the particle surface. The conditional equilibrium constants of surface adsorption of Co2+ on Fe3O4 and gamma-Fe2O3 nanoparticles have been determined to be log K=-3.3+/-0.3 and -3.1+/-0.2, respectively. The structural loading of Co2+ ions into Fe3O4 lattice has been found to be the ion exchange reaction between Co2+ and Fe2+ while that into gamma-Fe2O3 lattice to fill its vacancy. The effect of temperature on the adsorption of Co2+ was also investigated, and the value of enthalpy change was determined to be 19 kJ mol(-1).  相似文献   

11.
Tao J  Zhang YZ  Bai YL  Sato O 《Inorganic chemistry》2006,45(13):4877-4879
Two chain complexes built with non-carboxylate Mn(III)3O units, [Mn3O(ppz)3(MeOH)3(OAc)]n (1) and [Mn3O(Meppz)3(MeOH)4(OAc)]n (2), were synthesized and characterized. Magnetic studies revealed similar intrachain ferromagnetic interactions in them and field-induced metamagnetic properties in 1.  相似文献   

12.
Highly crystalline gamma-Fe(2)O(3) nanoparticles with narrow size distributions that are coated with 1-undecanesulfonic acid were synthesized via two distinct approaches using oxidation and site-exchange reactions. However, similar nanocrystals protected with 1-octanol could only be achieved via the site-exchange method, while the oxidation approach led to Fe(2)O(3) nanoparticles of poor crystallinity and size uniformity. Our magnetization measurements confirmed the superparamagnetic nature of our Fe(2)O(3) nanoparticle products and the effects of the coating materials on magnetization properties.  相似文献   

13.
We have chemically prepared a sample of antiferromagnetic alpha-Fe2O3 nanoparticles by a gel-sol technique. M?ssbauer spectra of the as-prepared sample showed that superparamagnetic relaxation was suppressed due to strong magnetic interparticle interactions even at room temperature. However, subsequent grinding of the sample by hand in a mortar for some minutes resulted in fast superparamagnetic relaxation of some of the particles. The effect was even more dramatic if the alpha-Fe2O3 powder was ground for a longer time or together with nonmagnetic eta-Al2O3 nanoparticles. Similar effects were found after low-energy ball milling. Thus it is found that the agglomeration of the nanoparticles during preparation under wet conditions results in strong magnetic interparticle interaction, but a relatively gentle mechanical treatment is sufficient to break up the agglomerates, resulting in much weaker interactions. We show that these effects can also be seen when a soil sample containing magnetic nanoparticles is ground.  相似文献   

14.
The preparation of capped metal oxide nanoparticles through the hydrolysis of metal salts is made arduous by the difficulty of dissolving long organic chain capping agents in water; by performing the reaction in propylene glycol under reflux, instead of water, we are able to hydrolyse FeCl3 in the presence of n-octylamine to obtain (repeatedly) soluble, monodisperse approximately 5 nm gamma-Fe2O3 particles that display a tendency to aggregate into superlattices.  相似文献   

15.
A method established in the present study has proven to be effective in the synthesis of Mn(2)O(3) nanocrystals by the thermolysis of manganese(III) acetyl acetonate ([CH(3)COCH=C(O)CH(3)](3)-Mn) and Mn(3)O(4) nanocrystals by the thermolysis of manganese(II) acetyl acetonate ([CH(3)COCH=C(O)-CH(3)](2)Mn) on a mesoporous silica, SBA-15. In particular, Mn(2)O(3) nanocrystals are the first to be reported to be synthesized on SBA-15. The structure, texture, and electronic properties of nanocomposites were studied using various characterization techniques such as N2 physisorption, X-ray diffraction (XRD), laser Raman spectroscopy (LRS), temperature-programmed reduction (TPR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results of powder XRD at low angles show that the framework of SBA-15 remains unaffected after generation of the manganese oxide (MnO(x)) nanoparticles, whereas the pore volume and the surface area of SBA-15 dramatically decreased as indicated by N2 adsorption-desorption. TEM images reveal that the pores of SBA-15 are progressively blocked with MnO(x) nanoparticles. The formation of the hausmannite Mn(3)O(4) and bixbyite Mn(2)O(3) structures was clearly confirmed by XRD. The surface structures of MnO(x) were also determined by LRS, XPS, and TPR. The crystalline phases of MnO(x) were identified by LRS with corresponding out-of-plane bending and symmetric stretching vibrations of bridging oxygen species (M-O-M) of both MnO(x) nanoparticles and bulk MnO(x). We also observed the terminal Mn=O bonds corresponding to vibrations at 940 and 974 cm-1 for Mn(3)O(4)/SBA-15 and Mn(2)O(3)/SBA-15, respectively. These results show that the MnO(x) species to be highly dispersed inside the channels of SBA-15. The nanostructure of the particles was further identified by the TPR profiles. Furthermore, the chemical states of the surface manganese (Mn) determined by XPS agreed well with the findings of LRS and XRD. These results suggest that the method developed in the present study resulted in the production of MnO(x) nanoparticles on mesoporous silica SBA-15 by controlling the crystalline phases precisely. The thus-prepared nanocomposites of MnO(x) showed significant catalytic activity toward CO oxidation below 523 K. In particular, the MnO(x) prepared from manganese acetyl acetonate showed a higher catalytic reactivity than that prepared from Mn(NO(3))2.  相似文献   

16.
A layered mixed-valence manganese complex, [Mn(II)(2)(bispicen)(2)(mu(3)-Cl)(2)Mn(III)(Cl(4)Cat)(2)Mn(III)(Cl(4)Cat)(2)(H(2)O)(2)](infinity), is synthesized and characterized structurally. It displays a slow magnetic relaxation and hysteresis effect.  相似文献   

17.
18.
《Polyhedron》2002,21(12-13):1299-1304
The crystal structure of a trinuclear iron monoiodoacetate complex was determined. Although it has been incorrectly characterized as [Fe3O(O2CCH2I)6(H2O)3], the correct chemical formula turned out to be [Fe(III)2Fe(II)O(O2CCH2I)6(H2O)3]-[Fe(III)3O(O2CCH2I)6(H2O)3]I (1). The two kinds of Fe3O molecules (Fe(III)2Fe(II)O and Fe(III)3O) are crystallographically indistinguishable. All the Fe atoms are crystallographically equivalent because of a crystallographic threefold symmetry. Heat capacities of 1 seem to exhibit no thermal anomaly in the temperature range 5.5–309 K, although the valence detrapping phenomenon has been observed in this temperature range. This fact indicates that the valence-detrapping phenomenon in 1 occurs without any phase transition, leading 1 to a glassy state, probably because the crystal of 1 is just like a solid solution of distorted mixed-valence Fe(III)2Fe(II)O molecules and permanently undistorted Fe(III)3O molecules which may act as an inhibitor for a cooperative valence-trapping.  相似文献   

19.
Adsorption of cations (Na(+), Ca(2+), Ba(2+)) onto negatively charged (pH 10.4) hematite (alpha-Fe(2)O(3)) particles has been studied. The oxide material was carefully prepared in order to obtain monodisperse suspensions of well-crystallized, quasi-spherical particles (50 nm in diameter). The isoelectric point (IEP) is located at pH 8.5. Adsorption of barium ions onto oxide particles was carried out and the electrophoretic mobility was measured throughout the adsorption experiment. Comparison with calcium adsorption at full coverage reveals a higher uptake of Ba(2+). In both cases it shows also that chloride ions coadsorb with M(2) ions. Simultaneous uptake of the positive and negative ions explains why the electrophoretic mobility does not reverse to cationic migration. A theoretical study of the surface speciation has been carried out, using the MuSiC model. It reveals the presence of negative as well as positive sites on both sides of the point of zero charge (PZC) of the hematite particles, which may explain the coadsorption of Ba(2+) and Cl(-) at pH 10.4. The effective charge of the oxide particles, calculated from the electrophoretic mobility, is in very good agreement with the results found with the MuSiC modelization and the chloride/barium adsorption ratio. It also verifies the theory of ionic condensation. Calorimetric measurements gave a negative heat for the overall reaction occurring when Ba(2+)/Cl(-) ions adsorb onto hematite. Despite the fact that anions (Cl(-) and OH(-)) adsorption onto mineral oxides is an exothermic phenomenon, it is likely that barium and calcium adsorption is endothermic, denoting the formation of an inner-sphere complex as reported in the literature.  相似文献   

20.
The synthesis of nanosized superparamagnetic hematite particles by dissolving ferric salts in hydrochloric acid and heating at 100 degrees C is described. A hydrolysis reaction causes the formation of hematite particles. The influence of the sequence of additions on the resulting precipitates was studied using TEM and XRD. The magnetic behavior was characterized by magnetization measurements. It was found that small changes in the reaction conditions led to remarkable changes in final size and shape of the hematite crystallites. A well-defined subrounded morphology and an average diameter of 41 nm were obtained for superparamagnetic hematite particles. This is the largest size reported thus far for superpara-magnetic hematite particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号