首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: The crystallization behavior of nylon‐6 and nylon‐6/montmorillonite nanocomposite films with different heat histories was investigated by wide‐angle X‐ray diffraction (WAXD). For nylon‐6 films isothermally crystallized above 170 °C or annealed at 200 °C and then quenched in ice water, a crystalline peak appeared at 2θ = 28.5°. This crystalline peak was strong in intensity for the former and weak for the latter. However, for nylon‐6 films cooled in air after isothermal crystallization or annealing, no crystalline peak at 2θ = 28.5° was observed in the WAXD patterns. For nylon‐6/montmorillonite nanocomposite films annealed above 140 °C, a crystalline double peak was observed between the α1 and α2 peaks. The possible origins of the peak at 2θ = 28.5° and the crystalline double peak are discussed.

WAXD patterns of isothermally crystallized nylon‐6/montmorillonite nanocomposite films.  相似文献   


2.
赵宁  徐坚 《高分子科学》2013,31(5):823-832
Structure of PAN fibers during pre-oxidation and carbonization was studied using two dimensional small angle X-ray scattering/wide angle X-ray diffraction(2D SAXS/WAXD).The SAXS results show that during pre-oxidation between 180 ℃ and 275 ℃,the volume content of microvoids increases with the temperature increasing,which may be one of reasons for the decrease of tensile strength of pre-oxidized fibers.253 ℃ was the critical transition temperature,the length,diameter,aspect ratio and orientation distribution of microvoids increased with temperature before this temperature and decreased after this temperature.After the high temperature carbonization,lots of spindly microvoids formed.WAXD patterns demonstrate that the crystallite size of PAN fibers first increased before 230 ℃ and then decreased with the increase of temperature during the pre-oxidation.The diffraction peak of PAN fibers at 2θ≈ 17° almost disappeared at the end of preoxidation while the diffraction peak of aromatic structure at 2θ≈ 25° appeared at 253 ℃.During carbonization,the peak intensity at 2θ≈ 25° increased apparently due to the formation of graphite structure.The results obtained give a deep understanding of the microstructure development in the PAN fibers during pre-oxidation and carbonization,which is important for the preparation of high performance carbon fibers.  相似文献   

3.
The melting process of constrained nylon 6 fibers has been studied to estimate the true melting point of its original crystals. The melting peak became simpler in shape and shifted to higher temperature with increasing fiber-axis restricting force. When heating rate, β, was increased, the temperature where the melting curve initially departs from its baseline, Tsm, decreased steeply in the range of 45 to 60°C min-1, and increased linearly with increasing β above 60°C min-1. By linear extrapolation of Tsm to 0°C min-1, the temperature of ca 190°C was obtained for the melting temperature of the original nylon 6 crystals. This seems to correspond to the zero-entropy-production melting of the most imperfect crystallites of the nylon 6 fabric. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Small-angle light-scattering (SALS), Polarized light microscopy (PLM), differntial scanning calorimetry (DSC), and small-angle x-ray scattering (SAXS) were used to study morphological changes in segmented polyurethanes with 4,4′-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BD) as the hard segment. It was found. for the first time, that spherulites could form from the melt by quenching the polyurethanes in the melt state to annealing temperatures between 120°C and Th, the highest annealing temperature for spherulite formation. Th ranged from 140°C to ca. 170°C and depended upon the hard-and soft-segment compatibility. Within the range 120°C to Th, the radius of the spherulite increased with increasing hard-segment content at each fixed annealing temperature. Annealing at 135–140°C gave rise to the largest spherulites. SAXS was used to investigate the phase-separated structures corresponding to the spherulite formation. The interdomain spacing increased with increasing hard-segment content and with increasing annealing temperature.The degree of phase separation first increased with increasing annealing temperature from room temperatures (ca. 25°C), reached a maximum at ca. 107°C, and then decreased with further increase in the annealing temperature. On the basis of these observations, the mechanisms of phase separation, crystallization, and spherulite formation are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Thermal transitions of a glassy, main chain, liquid crystalline, random copolyester, HIQ‐40, have been characterized. HIQ‐40 is made from 40 mol percent p‐hydroxybenzoic acid (HBA) and 30 mol % each of p‐hydroquinone (HQ) and isophthalic acid (IA). This polymer is soluble in organic solvents, permitting the preparation of thin, solution‐cast films that are in a glassy, metastable, optically isotropic state. On first heating of an isotropic HIQ‐40 film in a calorimeter, one glass transition is observed at low temperature (approximately 42°C), and is ascribed to the glass/rubber transition of the isotropic polymer. A cold crystallization exotherm centered near 150°C is observed. This is associated with the development of low levels of crystalline order. A broad melting endotherm is centered at about 310°C; this endotherm marks the melting of crystallites and the transformation to a nematic fluid. A nematic to isotropic transition was not observed by calorimetry. After quenching from the nematic melt, a Tg is observed in the range of 110–115°C and is associated with the glass/rubber transition of the nematically ordered polymer. Annealing optically isotropic films at temperatures above the isotropic glass transition results in the systematic development of axial order. In these annealed samples, Tg increases rapidly until it is near the annealing temperature, then Tg increases more slowly at longer annealing times. In as‐cast films annealed at 120–135°C, the light intensity transmitted through a sample held between crossed polarizers in an optical microscope (a qualitative measure of birefringence and, in turn, axial order) initially increases rapidly and uniformly throughout the sample and, at longer annealing times, approaches asymptotic values that are higher at higher annealing temperatures. The increase in transmitted intensity is ascribed to the development of axial order. The uniform increase in transmitted intensity suggests that ordering occurs by a rather global process and not via a nucleation and growth mechanism. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 505–522, 1999  相似文献   

6.
The crystalline phase of polyamide 6 (otherwise nylon 6) films produced following various physical treatments is investigated by means of thermal analysis, X‐ray diffraction, and infrared spectroscopy. A recently published procedure for treating infrared spectra of multicomponent compounds without a priori knowledge of the individual component spectra allowed us to perform a semiquantitative analysis of the structural changes upon annealing, including data from drawn samples. Melt‐cast films display a mesomorphic state that is thermally stable up to about 120 °C. This structure partly reorganizes into the stable monoclinic α form above 120 °C. Films in major γ form produced by iodine treatment are thermally stable up to 200 °C. Films in major α form are also prepared by superheated water treatment. No evidence is given for a Brill transition about 170 °C. This is an important fact for further understanding of the drawing behavior of PA6 at temperatures above and below this domain. The mesomorphic phase can hardly be separated from the amorphous component both from X‐ray and infrared analysis. However, scanning calorimetry, which is often criticized due to possible reorganization of unstable species during the heating scan, turned out to be a very useful technique. Indeed, recrystallization from the amorphous phase or improvement of ordering from the mesomorphic state both result in exothermic effects in quite different temperature domains that allow to discriminate the two phenomena. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 484–495, 2001  相似文献   

7.
The effect of melt annealing over a wide range of temperatures (240–300°C) and durations (0.5–120 min) on the induction period and the heat of crystallization of nylon 6 was studied by means of differential scanning calorimetry. It was found that the crystallization characteristics are determined by the total annealing time experienced by the melt at a given temperature; i.e., a cumulative effect on the erasure of the melt memory is observed. Complete destruction of the crystalline nuclei is achieved after annealing for 90 min at 280°C, the equilibrium melting point of nylon 6; the nuclei cannot be regenerated by nonisothermal crystallization. All the effects observed are explained by the existence of a wide distribution of size and perfection of nuclei.  相似文献   

8.
Electrospun nylon-6 fibers were prepared from its polyelectrolyte solution in formic acid with different concentrtaions. In situ Fourier transform infrared (FTIR), wide-angle X-ray diffraction and small-angle X-ray scattering (SAXS) were performed on the nylon-6 fibers heated to various temperatures until melting. For comparison, stepwise annealing of the solution-cast film having exclusively the α-form was also carried out to elucidate the structural evolution. Our results showed that Brill transition in the electrospun fibers occurs at a lower temperature than that in the solution-cast film due to the crystal size difference. Differential scanning calorimetry heating traces on the as-spun fibers exhibited a unique crystalline phase with a melting temperature of ~235?°C, higher than the equilibrium melting temperature of nylon-6. The content of high melting temperature (HMT) phase increased with increasing nylon-6 concentration; a maximum of 30?% of the fiber crystallinity was reached for fibers obtained from the 22?wt.% solution regardless of the heating rates used. Based on the SAXS and FTIR results, we speculated that the HMT phase is associated with thick α-form crystals developed from the highly oriented nylon-6 chains that are preserved in the skin layer of the as-spun fibers. A plausible mechanism for the formation of the skin/core fiber morphology during electrospinning was proposed.  相似文献   

9.
A commercial main-chain liquid-crystalline, naphthalene-based polyesteramide, was studied by three experimental techniques: extrusion capillary rheometry, dynamic viscoelasticity, and differential scanning calorimetry (DSC). From capillary rheometry a maximum at 360°C was observed in viscosity temperature curve. This result is compared with literature data for other thermotropics, and the possibility of a transition from a nematic to an isotropic phase is considered. The results obtained from dynamic viscoelasticity and DSC agree, and reveal the existence of a glass transition at 128°C (by DSC) and 137–147°C (by viscoelastic measurements, depending on frequency) as well as melting at 282°C. Annealing below 230°C produces two types of crystals, whereas annealing above this temperature gives rise to only one type of crystal, the melting temperature of which can be, depending on annealing time, as high as 340°C. The results are compiled in a phase diagram with six regions, four of them corresponding to the solid state, one to a liquid mesophase, and one to an isotropic phase.  相似文献   

10.
The dynamic rheological behavior of a liquid crystalline polymer (LCP), Vectra™ A, and nylons was investigated. The viscosities of nylon 66 and nylon 6 decrease slowly with an increase in temperature, while the viscosity of Vectra A drops dramatically at 280 °C, but remains slightly changed above 300 °C. At constant frequency and above 300 °C, the mean value of the activation energy of Vectra A is about 87.0 kJ/mole, but jumps to a much higher value of about 407.0 kJ/mole if the melt temperature is below 300 °C. The activation energy of Vectra A above 300 °C is lower than nylon 66, which shows that the viscosity of nylon 66 has a greater temperature dependence than Vectra A. The viscosity ratio of Vectra A to Nylon 66 is less than 1 at temperatures higher than 290 °C, which indicates that Vectra A can form the fibrils in the nylon 66 matrix and reinforce nylon 66 when blending them above this temperature. Experimental data confirm our prediction. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Summary: Wide‐angle X‐ray diffraction (WAXD) was used to investigate the crystal transition of nylon‐12,12 under annealing and drawing. The triclinic α‐form could be obtained by crystallizing from a melted state or by annealing the γ‐form at high temperature (above 150 °C). The crystal structure of the α‐form annealed at 90 °C didn't change with time except for the perfection of crystals and an increase in the degree of crystallinity. The pseudo‐hexagonal γ‐form could be produced by crystallizing from the melted state at low temperature (90 °C) or by drawing at 90 and 160 °C. This is the first time a Brill transition has been observed under drawing conditions, instead of under the traditional conditions of continuous heating and cooling. Experimental results also confirm that drawing inducement is preferable to produce the γ‐form and plays an important role in determining the crystal structure; there is a competition between drawing inducement and thermal inducement.

The WAXD patterns of the nylon‐12,12 α‐form drawn different drawing ratios at 90 °C.  相似文献   


12.
The double melting behavior of a thermotropic liquid crystalline polyimide was studied by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), transmission electron microscopy (TEM), wide‐angle X‐ray diffraction (WAXD), and small‐angle X‐ray scattering (SAXS). This liquid crystalline polyimide exhibited a normal melting peak around 278 °C and transformed into a smectic A phase. The smectic A phase changed to nematic phase upon heating to 298 °C, then became isotropic melt around 345 °C. The samples annealed or isothermally crystallized at lower temperature showed double melting endotherms during heating scan. The annealing‐induced melting endotherm was highly dependent on annealing conditions, whereas the normal melting endotherm was almost not influenced by annealing when the annealing temperature was low. Various possibilities for the lower melting endotherm are discussed. The equilibrium melting points of both melting peaks were extrapolated to be 283.2 °C. Combined analytical results showed that the double melting peaks were from the melting of the two types of crystallites generated from two crystallization processes: a slow and a fast one. Fast crystallization may start from the well‐aligned liquid crystal domains, whereas the slow one may be from the fringed or amorphous regions. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3018–3031, 2000  相似文献   

13.
Hydration in a new semiaromatic polyamide, named polyamide 9‐T (PA9‐T), a copolymer of terephthalic acid with n‐ and iso‐nonanediamines, is studied by dynamic viscoelastic analysis under controlled humidity conditions and wide‐angle X‐ray diffraction analysis in comparison with common polyamide nylon 6. The storage modulus of PA9‐T is retained at up to 60 °C with increasing humidity, then dropped with further increases in temperature past 70 °C. The decrease in mechanical properties at 70 °C due to moisture uptake is found to be substantially improved by annealing to develop molecular packing and/or crystallization. In contrast, the storage modulus of very highly crystallized (50% crystallinity) nylon 6 decreases markedly with humidity at low temperatures such as 20 °C. Thus, PA9‐T retains its mechanical properties in humid atmospheres at much higher temperatures than nylon 6. The crystalline X‐ray diffraction peaks for nylon 6 corresponding to (002) + (202) of the α form shift upon absorption of moisture, speculated to be due to the weakening of hydrogen bonds and the subsequent conformational disordering of the chains. Unlike nylon 6, the crystalline peaks of PA9‐T do not shift due to moisture uptake. This is considered to be attributable to that the long aliphatic chain in PA9‐T forms the large hydrophobic domain, rendering PA9‐T less hygroscopic than nylon 6. Additionally, strong hydrogen bonds formed by terephthalamide residues together with a strong stacking force of phenylene groups may also repel water, preventing moisture bind with the amide groups of PA9‐T crystals. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1640–1648, 2005  相似文献   

14.
The repeated heating and cooling cycles under sinusoidal deformation have been investigated on nylon 6 fibers. The fibers zone-drawn twice at high temperatures were used, which have a crystallinity of 52.2% and a birefringence of 59.4×10?3. The heating and cooling cycle was performed twice at a frequency of 110 Hz over a temperature range from 0°C to 180°C and 190°C. The crystallinity and birefringence of the treated fiber were 51.7% and 60.7×10?3, respectively, indicating almost no changes in molecular orientation and crystallinity. However, the dynamic modulus, E′, increased steadily over whole temperature range measured. Finally, the E′ value reached 21 GPa at room temperature and 10 GPa ever at 180°C. The elongation of fiber after two cycles was only about 5%. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
By means of electron microscopy of surface replicas and both small-angle and wide-angle x-ray scattering, nylon 6 fibers were investigated in the as-spun state, after drawing at 180°C to a draw ratio up to 4.95, and after subsequent annealing. As spun, the fiber exhibits a small fraction of row-nucleated cylindrites and a great many spherulites (with an average diameter of a few microns) side by side. Drawing deforms the spherulites into spindle-shaped structures (λ = 2) and subsequently produces well-aligned microfibrils. Small-angle x-ray scattering yields a two-point diagram at small λ and a fourpoint diagram at high λ. The long period seems to decrease slightly with draw ratio. Annealing at temperatures above the temperature of drawing increases the long period to a greater extent with samples of lower λ. The crystal lattice orientation is nearly complete at λ = 4.95.  相似文献   

16.
No systematic study has been reported on the lamellar thickening in atactic poly(acrylonitrile) (PAN) upon annealing because PAN, in the form of solution‐cast films or their drawn products, generally shows no small‐angle X‐ray scattering (SAXS) maximum corresponding to the lamellar thickness. In this work, PAN crystals were precipitated during the thermal polymerization of acrylonitrile in solution. The nascent PAN film, obtained by the filtration of the crystal suspension, exhibited a clear SAXS maximum revealing the lamellar structure. The lamellar thickening upon annealing of the nascent PAN films was studied in the temperature range 100–180 °C, where the degradation was minimal, as confirmed by the absence of an IR absorption band at 1605 cm−1 ascribed to the cyclized nitrile groups. Above 190 °C, the degradation of the samples was significant, and the SAXS became too broad to determine the scattering maximum. The long period was significantly affected by the annealing time (ta) and the temperature (Ta). Depending on ta, three stages were observed for the lamellar thickening behavior. The lamellar thickness stayed constant in stage I (ta = 0.5–3 min, depending on Ta), rapidly increased in stage II (ta = 0.5–8 min), and stayed at a constant value characteristic for each Ta at yet longer ta's in stage III. The lamellar thickness characteristic for Ta increased rapidly with increasing Ta at 165 °C (or higher), which was 152 °C lower than the estimated melting temperature of PAN (Tm = 317 °C). A possible mechanism for such lamellar thickening in PAN far below the Tm is discussed on the basis of the enhanced chain mobility in the crystalline phase above the crystal/crystal reversible transition at 165–170 °C detected by differential scanning calorimetry and wide‐angle X‐ray diffraction. The structural changes associated with annealing are also discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2571–2579, 2000  相似文献   

17.
The crystallization kinetics and morphology of PEN/PET copolyesters were investigated using differential scanning calorimetry (DSC), time‐resolved small‐angle X‐ray scattering (TR‐SAXS), and transmission electron microscopy (TEM). The Avrami exponents obtained using DSC were approximately 3 for homo PEN and 4 for all the copolyesters. The 3‐parameter Avrami model was successfully fitted to the invariants with respect to the time obtained from TR‐SAXS, and the exponent values were similar to those obtained from DSC. Moreover, the Avrami rate constants obtained from TR‐SAXS showed marked temperature‐sensitive decreases in all samples, like those obtained from DSC. This indicates that not only could changes in morphological parameters be obtained from the analysis of TR‐SAXS data but also crystallization kinetics. The changes in the morphological parameters determined from the SAXS data indicate that the minor components, dimethyl terephthalate (DMT) segments, are rejected into the amorphous phase during crystallization. In the TEM study, copolyesters crystallized at temperature above 240 °C grew into both the α‐ and β‐form, although 240 °C is the optimum condition for the β‐form crystal. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 805–816, 2005  相似文献   

18.
The slow crack growth behavior of a linear polyethylene with different morphologies was studied by using three point bending with a single edge notched specimen at testing tem-peratures from 30 to 80°C. The morphology was varied by annealing the quenched material at temperatures from 86°C to 135°C. It was found that at test temperatures of 60°C or less, the changes in failure time with annealing temperature are very similar to the change in density with a maximum at 130°C. At testing temperatures above 60°C, the relationship of between failure time and annealing temperature is altered when the test is in the range of the α transition temperature. These results indicate that with respect to slow crack growth in the case of a homopolymer the strength of the crystals is relatively more important than the number of tie molecules. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Structural changes in poly(L -alanine)(PLA), a model compound related to tussah silk fibroin, induced by heat treatment have been studied by differential thermal analysis, x-ray diffraction, and infrared spectroscopy. PLA heated below 300°C shows x-ray patterns very similar to those of the α-helix crystalline phase, in addition to the diffraction patterns due to the β structure. Samples heated at 368°C exhibit predominantly the diffraction patterns due to the β crystalline phase. From infrared spectra, PLA samples heated below 280°C are found to be composed of all three molecular conformations: β sheet, random coil, and α helix. The intensity of the infrared absorption at 650 cm?1 (amide V) assigned to the random coil conformation is decreased by heat treatment above 325°C. The content of the β-sheet structure remains almost constant when the specimen is heated below 325°C, and increases abruptly on heating to around 335°C, while the random coil content is decreased abruptly by heat treatment above 335°C. The α-helix content does not change, regardless of heat treatment. It is suggested therefore that the random coil conformation of PLA transforms directly into the β sheet on heat treatment above 335°C.  相似文献   

20.
Temperature-reversible and -irreversible morphological events could be separated in the case of linear polyethylene during quasi-isothermal crystallization by using simultaneous temperature-modulated synchrotron SAXS and WAXD. Crystallization and subsequent annealing was followed at 126 °C for 90 min while applying a temperature modulation with an amplitude of 1 °C and a period of 2 min. The crystal growth rate associated with the irreversible part of the crystallization decreases with increasing temperature in a cycle. The crystalline lamellae irreversibly thicken with time. The actual crystallite thickness, however, exhibits a superimposed modulation out of phase with that of the temperature modulation. Melting was studied during heating at 1 °C/min after cooling at 10 °C/min. A temperature modulation was superimposed with an amplitude of 2 °C and a period of 3 min. Once again temperature-reversible crystal thickness changes and irreversible crystal thickening could be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号