首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以碘化-N-甲基-2-氯吡啶盐为缩合剂,在三乙胺存在下由3-(2-环戊酮基)丙酸及3-(2-环己酮基)丙酸分别同四氢噻唑-2-硫酮反应,得到新化合物N-(2-环戊酮基内酰基)四氢噻唑-2-硫酮(2a)及N-(2-环己酮基丙酰基)四氢噻唑-2-硫酮(2b),产率分别为52.9%和51.0%,2a,b分别同甲醇、乙醇反应得到相应的3-(2-环戊酮基)丙酸酯3a,b及3-(2-环己酮基)丙酸酯3c,d,3a~d的产率为75~87%;2a、b分别同胺反应得到3-(2-环戊酮基)内酰胺4a、b及3-(2-环己酮基)内酰胺4c、d,4a~d产率为78~93%。  相似文献   

2.
3-(2-氧代环烷基)丙酸与(R)-2-硫代四氢噻唑-4-羧酸乙酯的反应李叶芝,田颜清,黄化民(吉林大学化学,长春,130023)关键词(R)-2-硫代四氢噻唑-4-羧酸乙酯,N-3-(2-氧代环烷基)丙酰-2-硫代四氢噻唑-4-羧酸乙酯,环合反应,...  相似文献   

3.
用abinitioMO法计算了6种氯代四唑银的配合物模型,结果表明,π型配合物难以存在.在σ型配合物中银的配位使四唑环上单键增长、体系更不稳定.环N(2)(或N(3))原子较N(1)(或N(4))原子易于与金属成键;N(2)型配合物较N(1)型配合物稳定.预示5氯四唑银配合物将以2∶1(配体:金属原子)N(2)型为主.  相似文献   

4.
通过1[(Z)2(三苯基锡基)乙烯基]环戊醇与Br2反应制得了新化合物1[(Z)2(苯基二溴化锡基)乙烯基]环戊醇.通过元素分析、锡含量测定、IR、1HNMR对其进行了表征并用X射线衍射法测得了所合成化合物的晶体结构.该化合物属正交晶系,P212121空间群,晶胞参数:a=08675(4)nm,b=12523(7)nm,c=14009(8)nm;Z=4,V=15219nm3,Dc=2.39cm3,u=23.72cm-1.结构分析表明,标题化合物分子为畸变的三角双锥构架,双键的两个氢取顺式结构,分子中O与Sn配位,形成五元螯合环结构  相似文献   

5.
γ-氯代丁酸酯的合成研究   总被引:3,自引:0,他引:3  
γ-氯代丁酸酯的合成研究周龙虎,史达清,戴桂元(徐州师范学院化学系,221009)γ-氯代丁酸醋是重要有机合成试剂,它是用于合成广谱抗菌剂环丙氟哌酸和环丙氟啶酸的中间体环丙胺及新型拟除虫菊醋中间体环丙酸的原料 ̄[1]。合成γ-氯代丁酸酯常用的方法有 ̄...  相似文献   

6.
用密度泛函(DFT)方法,在B3LYP/6-31G**水平上对2-溴丙酸气相消除反应机理进行了研究.计算表明,反应主要是通过半极化五元环结构过渡态进行的,羧基上的氢原子协助溴原子离去,羧基氧原子帮助稳定过渡态.在B3LYP/6-311++G(3df,3pd)水平上对B3LYP/6-31G**优化的几何构型进行了单点能计算,计算所得反应的速度控制步骤的活化能为189.461 kJ•mol-1,偏离实验值((180.3±3.4) kJ•mol-1)5.08%.  相似文献   

7.
研究了在35±0.1℃、离子强度0.5mol/L(KCl)条件下,甲酸根、乙酸根、丙酸根和丁酸根分别催化Cu(Ⅱ)离子与四溴化间-四(N-乙酸甲酯基-3-吡啶基)卟啉(H2TB-N-ACMSpyPBr4)的反应动力学及其机理,该类反应对卟啉和Cu(Ⅱ)离子均为一级反应,反应动力学方程为:d[Cup4+]/dt=k{(1.0+b[A-])/(1.0+K3,4·[H+]2)}[Cu2+][p]T,在甲酸-甲酸根缓冲体系中,k=2.98mol-1dm3·sec-1,b=154×102mol-2,dm6·sec-1,K3,4=6.928×103;在乙酸-乙酸根缓冲体系中,k=3.42mol-1·dm3·sec-1,b=2.29×103mol-2·dm6·sec-1,K3,4=6.928×103;在丙酸-丙酸根缓冲体系中,k=3.00mol-1·dm3·sec-1,b=5.90×102mol-2·dm6·sec-1,K3,4=7.007×103;在丁酸-丁酸根缓冲体系中,k=3.14mol-1·dm3·sec-1,b=3.75×102mol-2·dm6·sec-1,K3,4=6.921×103;讨论了有机酸根的碱性与  相似文献   

8.
韩广甸  黄国锋 《合成化学》1997,5(2):171-174
本文报道用环加成-芳构化串连反应制备多取代芳香族化合物的方法,将1-氯-2-卤-3-苯硒基-1,3-丁二烯(5)与丁炔二酸二甲酯进行Diels-Alder反应时,能直接生成多取代的芳香族化合物4-苯硒基-5-卤代邻苯二甲酸二甲酯(4)。若用2-卤素-3-苯硒基-1,3-丁二烯(1)与丁炔二酸二甲酯进行Diels-Alder反应,只得到正常的加成产物4-苯硒基-5-卤素-1,4-环己二烯-1,2-二  相似文献   

9.
用亚磷酸二乙酯与亚胺加成的方法合成了20个N-(2-苯并噻唑基)-α-氨基膦酸二乙酯类化合物.利用协同3+2机理对反应进行了解释.运用量子化学方法(MINDO/3)计算了亚胺分子的原子电荷,并讨论了取代基对五元环过渡态形成的影响.所合成的部分化合物具有较好的抑制烟草花叶病毒(TMV)活性和一定的除草活性.  相似文献   

10.
报道了苯基硫脲与脂肪醋(酮)及三氯化磷进行的类Mannich反应,除生成预期产物3-苯-4-氯-4-氧代-1,3,4二氮磷杂环戊-2-硫酮(Ⅰ)外,还生成了少量3-苯基-4-氯-4-硫代-1,3,4-二氮磷杂环戊-2-硫酮(Ⅱ)。当Ⅰ与Lawesson试剂在甲苯中反应时,可顺利地转化为Ⅱ,生物测定结果表明,Ⅱ具有较好的选择性除草活性,晶体结构测定表明,Ⅱ的五元磷杂环为平面结构。  相似文献   

11.
The reaction mechanism for the thermal Curtius reaction of formyl azide has been investigated using B3LYP/6‐311+G(d,p). It is found that, while the synisomer undergoes nitrogen elimination via a concerted mechanism, yielding isocyanic acid directly, the anti‐isomer cannot undergo reaction via the concerted mechanism and first eliminates nitrogen, yielding oxazirene, via a transition state which is higher in energy than that for the concerted mechanism. Singlet formyl nitrene does not exist as an independent moiety. Rather, the strong N? O interaction yields the cyclic isomer oxazirene. The isomerization of oxazirene to isocyanic acid goes through a transition state which is even higher in energy than that for nitrogen elimination. It is hence proposed that this reaction should take place via the concerted mechanism only, the anti‐isomer undergoing isomerization first to the syn isomer since the activation barrier for this step is very small. The same mechanism is found to prevail for acetyl and benzoyl azide. These findings are in accord with all experimental data. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

12.
The theoretical studies of the gas-phase elimination of 2-substituted ethyl N,N-dimethylcarbamates (Z=CH2Cl, C≡CH, C≡N) were performed using ab initio MP2/6-31G and MP2/6-31G(d) levels of theory. The gas phase elimination reaction of these carbamates yields N,N-dimethylcarbamic acid and the corresponding substituted olefin in a rate-determining step. The intermediate N,N-dimethylcarbamic acid is unstable and rapidly decomposes through a four-membered cyclic transition state to dimethylamine and CO2 gas. The results of these calculations suggest a mechanism to be concerted, asynchronous, and a six-membered cyclic transition state structure. Plotting the relative theoretical rate coefficients against Taft's σ* values gave an approximate straight line (ρ*=0.4057, r=0.9894 at 360 °C). The correlation between experimental log krel vs. theoretical log krel. for these 2-substituted ethyl N,N-dimethylcarbamates gave an approximate straight line (r=0.9715 at 360 °C), suggesting the same type of mechanism.  相似文献   

13.
Møller-Plesset MP2/6-31G method was used to examine the gas-phase elimination of 2-substituted alkyl ethyl N,N-dimethylcarbamates. The results of these calculations support a concerted non-synchronous six-membered cyclic transition state mechanism for carbamates containing a Cβ–H bond at the alkyl side of the ester. These substrates produce the N,N-dimethylcarbamic acid and the corresponding olefin. The unstable intermediate, N,N-dimethylcarbamic acid, rapidly decomposes through a four-membered cyclic transition state to dimethylamine and CO2 gas. Correlation of the logarithm of theoretical rate coefficients against original Taft's σ* values gave an approximate straight line (ρ*=−1.39, r=0.9558 at 360 °C). In addition to this fact, when log krel is plotted against the theoretical log krel for 2-substituted ethyl N,N-dimethylcarbamates a reasonable straight line (r=0.9919 at 360 °C) is obtained, suggesting similar mechanism.  相似文献   

14.
采用从头算RHF/6-31G方法研究了硫代双烯酮与异氰酸之间两种可能的环加成反应的机理,并对反应各驻点进行了电子密度拓扑分析研究.结果表明,这两个生成不同四元杂环产物的平行反应均为非同步的协同反应,但两个反应进行的难易程度不同,形成硫氮杂环的反应更容易一些,而形成氮杂环反应的产物在热力学上更稳定一些  相似文献   

15.
The gas-phase thermal elimination of 2,2-diethoxypropane was found to give ethanol, acetone, and ethylene, while 1,1-diethoxycyclohexane yielded 1-ethoxycyclohexene and ethanol. The kinetics determinations were carried out, with the reaction vessels deactivated with allyl bromide, and the presence of the free radical suppressor cyclohexene and toluene. Temperature and pressure ranges were 240.1-358.3 °C and 38-102 Torr. The elimination reactions are homogeneous, unimolecular, and follow a first-order rate law. The rate coefficients are given by the following Arrhenius equations: for 2,2-diethoxypropane, log k(1) (s(-1)) = (13.04 ± 0.07) - (186.6 ± 0.8) kJ mol(-1) (2.303RT)(-1); for the intermediate 2-ethoxypropene, log k(1) (s(-1)) = (13.36 ± 0.33) - (188.8 ± 3.4) kJ mol(-1) (2.303RT)(-1); and for 1,1-diethoxycyclohexane, log k = (14.02 ± 0.11) - (176.6 ± 1.1) kJ mol(-1) (2.303RT)(-1). Theoretical calculations of these reactions using DFT methods B3LYP, MPW1PW91, and PBEPBE, with 6-31G(d,p) and 6-31++G(d,p) basis set, demonstrated that the elimination of 2,2-diethoxypropane and 1,1-diethoxycyclohexane proceeds through a concerted nonsynchronous four-membered cyclic transition state type of mechanism. The rate-determining factor in these reactions is the elongation of the C-O bond. The intermediate product of 2,2-diethoxypropane elimination, that is, 2-ethoxypropene, further decomposes through a concerted cyclic six-membered cyclic transition state mechanism.  相似文献   

16.
Various ONIOM combinations-ONIOM(HF/6-31G*: PM3), ONIOM(B3LYP/6-31G*: PM3), ONIOM(MP2/6-31G*: PM3), and ONIOM(MP2/6-31G*: HF/3-21G)--were applied to investigate thermal decomposition mechanisms of four 2-phenoxycarboxylic acids (2-phenoxyacetic acid, 2-phenoxypropionic acid, 2-phenoxybutyric acid, and 2-phenoxyisobutyric acid) in the gas phase. All the transition states and intermediates of the reaction paths were optimized. The reaction pathway of four reactants yielding the phenol, CO, and the corresponding carbonyl compound was characterized on the potential energy surface and found to proceed stepwise. The first step corresponds to the elimination of phenol and the formation of alpha-lactone intermediate through a five-membered ring transition state, and the second step is the cycloreversion process of alpha-lactone intermediate to form CO and the corresponding carbonyl compound. The reaction pathway of latter three compounds to produce the carboxylic acid and phenol via a four-membered cyclic transition structure was also examined theoretically. Comparison with experiment indicates that the activation parameters for the fist reaction channel are accurately predicted at the ONIOM(MP2/6-31G*: HF/3-21G) level of theory.  相似文献   

17.
In this work, a theoretical study at the MP2/6-31G(d) level of the thermal decomposition retro-ene reaction of 2-methylbutyraldehyde was carried out at a pressure of 1.5 atm. and temperatures ranging from 1110 to 1190 K. The progress of the reaction has been followed by means of the Wiberg bond indices which in turn allowed the calculation of the reaction synchronicity. Transition state theory was used to calculate the theoretical rate constant at 1150 K which was compared with the previously reported experimental value at the same conditions. We found that both values show a close agreement. The obtained computational evidence allowed us to support a reaction mechanism which proceeds in two steps: the first one with the formation of ethylene and 1-propenol via a six-membered cyclic transition state and the second one involving keto-enol equilibrium of 1-propenol to propionaldehyde via a four-membered cyclic transition state. It was found that the reaction is a highly synchronous and concerted process. The results obtained for the thermolysis of 2-methylbutyraldehyde were compared with those obtained for the thermolysis of 2-pentanone. A comparison of our results with those reported for their corresponding β-hydroxy counterparts, 3-hydroxy-2-methylpropionaldehyde and 4-hydroxy-2-butanone has also been made. A study of the thermochemistry of the compounds involved in the reactions studied has been carried out at the G3 level.  相似文献   

18.
用从头算方法在6-31G的水平上研究了丙酮酸和苯甲酰甲酸热分解反应的机理.反应过程中各驻点都进行MP2相关能校准.计算结果表明:这两个反应都是羟基氢经历五元环过渡态迁移到α-羰基氧上形成氢键中间体;然后氢键中间体直接分解成异构体和二氧化碳;最后异构体经历三元环过渡态异构化成相应的醛.其中氢迁是决速步骤.在MP2/6-31G//HF/6-31G基础上,对应于这两个反应速控步骤的活化位垒分别是186.0kJ·mol-1和169.3kJ·mol-1.在传统过渡态理论的基础上,计算了这两个反应在一定温度范围内热速率常数,理论的计算结果与实验值有很好的吻合.  相似文献   

19.
The mechanism of the gas-phase reaction of *CH2OH+O2 to form CH2O+HO2* was studied theoretically by means of high-level quantum-chemical electronic structure methods (CASSCF and CCSD(T)). The calculations indicate that the oxidation of *CH2OH by O2 is a two-step process that goes through the peroxy radical intermediate *OOCH2OH (1), formed by the barrier-free radical addition of *CH2OH to O2. The concerted elimination of HO2* from 1 is predicted to occur via a five-membered ringlike transition structure of Cs symmetry, TS1, which lies 19.6 kcalmol(-1) below the sum of the energies of the reactants at 0 K. A four-membered ringlike transition structure TS2 of Cs symmetry, which lies 13.9 kcalmol(-1) above the energy of the separated reactants at 0 K, was also found for the concerted HO2* elimination from 1. An analysis of the electronic structures of TS1 and TS2 indicates that both modes of concerted HO2* elimination from 1 are better described as internal proton transfers than as intramolecular free-radical H-atom abstractions. The intramolecular 1,4-H-atom transfer in 1, which yields the alkoxy radical intermediate HOOCH2O*, takes place via a puckered ringlike transition structure TS3 that lies 13.7 kcalmol(-1) above the energy of the reactants at 0 K. In contrast with earlier studies suggesting that a direct H-atom abstraction mechanism might occur at high temperatures, we could not find any transition structure for direct H-atom transfer from the OH group of *CH2OH to the O2. The observed non-Arrhenius behavior of the temperature dependence of the rate constant for the gas-phase oxidation of *CH2OH is ascribed to the combined effect of the initial barrier-free formation of the *OO-CH2OH adduct with a substantial energy release and the existence of a low-barrier and two high-barrier pathways for its decomposition into CH2O and HO2*.  相似文献   

20.
Ab initio molecular orbital calculations have been used to investigate the thermal decomposition kinetics of 2-chloroethylethyldichlorosilane at the B3LYP/6-311+G**,B3PW91/6-311+G**,and MPW1PW91/6-311+G** levels of theory.Among these methods,the results(activation parameters) obtained using the B3LYP/6-311+G** level are in good agreement with the available experimental data.The calculated data imply that in the unimolecular β-elimination reactions of the studied compound in the gas phase,the polarization of C(1)-Cl(3) and C(1)-H(4) bonds in the sense of C(1)δ+-Cl(3)δ-and C(1)δ+-H(4)δ-,respectively,is a determining factor in the gas phase elimination reactions 1,2 and 3.Analysis of bond order,natural bond orbital charges,bond indexes,synchro-nicity parameters,and IRC calculations suggest the elimination of 2-chloroethylethyldichlorosilane via reactions 1~3 can be described as concerted and slightly asynchronous.The transition state structures of these reactions are a four-membered cyclic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号