首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
碳纳米管表面修饰程度对碳纳米管载Pt电催化性能的影响   总被引:5,自引:0,他引:5  
比较了用不同温度的浓HNO3处理的碳纳米管(CNTs)作载体的Pt(Pt/CNTs)对甲醇氧化的电催化活性. 结果表明浓HNO3处理使CNTs表面修饰上的含氧基团对CNTs上沉积Pt粒子的平均粒径有较大影响. 表面修饰程度适当时, 制得的Pt/CNTs中Pt粒子较小, 因此, 对甲醇氧化的电催化活性较高. 而表面修饰程度过大, 易使Pt粒子团聚, 从而降低Pt/CNTs催化剂对甲醇氧化的电化学活性.  相似文献   

2.
0引言Pt金属是直接甲醇燃料电池(DMFC)常用的催化剂犤1~3犦。为了尽可能减少Pt金属用量,提高Pt的分散度,人们总是选择具有高表面积的基质,如石墨、碳黑、活性碳、分子筛、质子交换膜等,作为Pt金属的载体犤3~5犦。最初,人们以为载体的作用仅仅是提供表面积和多孔气体扩散电极的骨架,使Pt微粒可以有更大的比表面积与反应物接触,但是现在普遍认为犤1犦,当Pt金属负载在活性炭上时,它们中的催化性能有一部分应归结于金属和载体之间的相互作用,因此,载体的形貌及物理化学性质直接影响着催化剂对甲醇的电催化氧化活性。碳纳米管(CNTs)由于…  相似文献   

3.
铂催化剂;碳纳米管;甲醇;直接甲醇燃料电池  相似文献   

4.
以氨基化的碳纳米管为基体,通过界面聚合方法将聚苯胺共价接枝于碳纳米管表面,负载催化剂颗粒Pt. 通过透射电镜(TEM)、X射线衍射(XRD)及电化学方法对催化剂进行了表征. TEM结果表明通过界面聚合的方法可以使聚苯胺均匀地接枝于碳纳米管表面. 电化学测试结果表明,碳纳米管共价接枝聚苯胺作为载体可以提高催化剂的抗CO中毒性能,有利于对甲醇的催化氧化. 研究其对甲醇的催化活性,并与商业的JM(Pt/C)催化剂进行了对比. 结果表明,碳纳米管共价接枝聚苯胺,有效提高了催化剂的稳定性,延长催化剂的寿命.  相似文献   

5.
碳纳米管 (CNT)作为制备新型催化剂载体已有广泛的研究 [1~ 8] ,例如 ,在其表面负载 Pt,Ru和Pt Ru后则具有良好的催化性能[1,2 ,6~ 8] .但在 CNT表面负载金属微粒的方法难以获得尺寸和形状均匀的纳米粒子 .因此 ,如何制备超细和均匀的纳米粒子是一项具有重要的学术意义和技术价值的工作 .我们利用微波加热的多元醇工艺合成了 XC-72碳负载铂纳米粒子的催化剂 ,并发现它对甲醇的氧化具有较高的电催化活性 [9] .本文进一步以 CNT作为载体 ,利用微波加热法快速合成了 Pt/ CNT纳米催化剂 ,并对其对甲醇电化学氧化的性能进行了初步研究 …  相似文献   

6.
将萘-1-亚甲基膦酸通过π-π堆积作用修饰在多壁碳纳米管(MWCNT)上,然后制备了MWCNT载Pd(Pd/MWCNT)催化剂。 利用Pd和HAuCl4间的置换反应制得MWCNT载Pd-Au(Pd-Au/MWCNT)催化剂。 透射电子显微镜(TEM)、X射线光电子能谱(XPS)和X射线衍射光谱(XRD)测试结果显示,非合金化的Pd-Au纳米粒子均匀分布在MWCNT表面。 循环伏安和计时电流测试显示,非合金化Pd-Au/MWCNT催化剂对甲酸氧化的电催化活性以及稳定性优于Pd/MWCNT催化剂。  相似文献   

7.
采用水热法和牺牲模板法相结合制备具有中空树枝结构的三氧化钨载体(d-WO3),在其表面进一步负载活性成分Pt,得到纳米Pt/d-WO3复合催化剂。采用X射线粉末衍射(XRD)、透射电镜(TEM)和比表面积和孔结构分析(BET)等对催化剂的形貌和结构进行了表征。结果表明,三氧化钨具有长6 μm和宽2 μm的中空树枝状结构,孔径分布主要集中在20~120 nm,比表面积为24 m2/g,平均粒径为7.2 nm的Pt纳米粒子均匀分布在其表面。采用循环伏安和计时电流法研究了Pt/d-WO3催化剂在酸性溶液中对甲醇的电催化氧化性能。结果表明,Pt/d-WO3催化剂比Pt/C和Pt/WO3催化剂对甲醇有更高的电催化氧化活性和稳定性。d-WO3所具有的中空介孔结构和双功能作用机理有利于甲醇在铂表面的直接脱氢氧化过程。  相似文献   

8.
制备了一种新的甲醇直接燃料电池Pt/RuO2/CNTs阳极催化剂,在相同Pt负载量下,其甲醇电催化氧化活性是Pt/CNTs的3倍.采用循环伏安法研究发现Pt/RuO2/CNTs纳米催化剂中RuO2含量对甲醇电催化氧化活性有明显影响,当Pt和RuO2在碳纳米管上含量分别为15%和9.5%时,Pt/RuO2/CNTs催化剂具有最佳的甲醇电催化氧化活性.RuO2负载在碳纳米管上比电容的变化,反映了水合RuO2结构中质子与电子传输平衡的能力,分析表明,催化剂中RuO2含量不同导致电容的变化是影响甲醇电催化氧化活性的主要原因.当催化剂结构中质子与电子传输达到平衡时,催化剂比电容最大,电催化氧化活性最高.这种基于电容关联电催化剂的观点对甲醇直接燃料电池阳极催化剂的设计非常有意义.  相似文献   

9.
快速功能化碳纳米管载 Pt 催化剂的醇氧化性能(英文)   总被引:1,自引:0,他引:1  
采用HF刻蚀及交替微波加H2O2相结合的方法进行快速功能化碳纳米管(CNTs),应用红外光谱、拉曼光谱和透射电镜等方法详细考察了CNTs及其载Pt催化剂的物化性质,并采用循环伏安法、线性电流扫描法和计时电流法考察了所得催化剂的电化学性能.结果表明,CNTs经过HF刻蚀和交替微波H2O2双重处理后更适合用作催化剂载体,以10s-on/20s-off加热5次所得CNTs载Pt催化剂显示出最佳的催化性能.这可归因于处理后的CNTs表面含有丰富的微孔及含氧官能团,能有效增强Pt颗粒及CNTs间的相互作用.  相似文献   

10.
碳纳米管负载金属Pt催化剂的制备和机理研究   总被引:10,自引:0,他引:10  
本文报道了高温裂解法沉积铂纳米颗粒于碳纳米管壁的新方法。利用红外光谱技术考察了碳纳米管壁的官能团衍生化以及这些官能团与铂颗粒沉积间的关系。利用透射电镜(TEM)、X-射线粉末衍射(XRD)以及光电子能谱技术(XPS)对碳纳米管壁上负载的铂纳米颗粒进行了表征。结果表明,大小约为5 nm的铂纳米颗粒以金属Pt(0)的形式均匀分散在纳米管表面,主要晶面定向为(111)面。同时,考察了甲醇在碳纳米管负载铂纳米颗粒复合材料电极上的电催化氧化。  相似文献   

11.
以原位化学聚合的聚乙酰苯胺/多壁碳纳米管(PAANI-MWCNTs)复合纳米材料作为载体,采用硼氢化钠还原法将Pt纳米粒子担载到PAANI-MWCNTs复合纳米材料表面,制备了Pt/PAANI-MWCNTs复合纳米催化剂.样品的结构和形貌用紫外-可见(UV-Vis)光谱、拉曼光谱、扫描电镜(SEM)、透射电镜(TEM)和X射线衍射(XRD)进行了表征.结果表明,聚乙酰苯胺与碳纳米管之间存在较强的π-π相互作用,使其能牢固地吸附于多壁碳纳米管表面,对碳纳米管的结构完整性和导电性有一定的改善作用.同时,金属Pt纳米颗粒较为均匀地分散在PAANI-MWCNTs表面,粒径分布范围较窄.采用循环伏安法和计时电流法在酸性溶液中研究了Pt/PAANI-MWCNTs催化剂对甲醇的电催化氧化活性,结果表明Pt/PAANI-MWCNTs复合纳米催化剂比用混酸处理的碳纳米管载铂催化剂对甲醇呈现出更高的电催化氧化活性和更好的抗中毒能力及稳定性.  相似文献   

12.
炭载体改性对炭载Pd催化剂电催化性能的影响   总被引:3,自引:0,他引:3  
研究了硝酸和氨水改性处理对活性炭表面基团、炭载Pd纳米粒子的形态及其对甲酸氧化电催化性能的影响.傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)及Boehm滴定结果表明,硝酸和氨水处理分别增加了活性炭表面含氧基团和含氮基团的含量.透射电镜(TEM)及电化学测试显示,活性炭经硝酸处理后,表面负载的Pd粒子粒径降低,催化剂对甲酸氧化活性和稳定性提高.进一步用氨水处理后,Pd粒子的粒径没有明显变化,但催化剂中Pd0的含量增加,催化剂性能进一步提高.  相似文献   

13.
碳纳米管微结构的改变对其容量性能的影响   总被引:9,自引:0,他引:9  
以KOH为活性剂,通过在高温下将碳纳米管进行活化处理来实现对碳纳米管管壁结构的改变,得到了比表面积和孔容分别是活化处理前约3倍和1.5倍的活性碳纳米管.将活化处理前后两种碳纳米管分别制作成电化学超级电容器电极,在充满氩气的无水手套箱组装成模拟电化学超级电容器,在恒流充放电模式下进行电化学可逆容量的测试,发现活性碳纳米管的电化学容量远高于活化前碳纳米管,是它的2倍.从而发现碳纳米管被打断,管壁变粗糙的活性碳纳米管比一般碳纳米管更适合用于电化学超级电容器电极材料.  相似文献   

14.
采用简单的化学氧化聚合法制备了新型多孔结构的聚乙酰苯胺纳米纤维(np-PAANI), 并以此为载体在络合剂的存在下合成了Pt纳米微粒修饰的np-PAANI复合物膜电极C/np-PAANI/Pt. 样品的形貌和结构通过扫描电镜(SEM)、透射电镜(TEM)和X射线衍射(XRD)进行了表征. 在0.5 mol·L-1 CH3OH+0.5 mol·L-1 H2SO4混合溶液中考察了C/np-PAANI/Pt催化剂对甲醇的电催化氧化性能. 结果表明, 以np-PAANI负载的Pt催化剂对甲醇的电催化氧化活性和稳定性都比普通PAANI结构及石墨粉负载的Pt催化剂好很多.  相似文献   

15.
Pt/C催化剂对乙醇电氧化的粒径效应   总被引:1,自引:0,他引:1  
利用有机溶胶方法, 通过控制溶剂挥发温度制备了具有不同粒径大小的Pt/C催化剂. 制得的Pt/C催化剂中, Pt粒子具有非常优异的均一性和良好的分散度. 电化学研究表明, 对于乙醇的电催化氧化, Pt/C催化剂存在着明显的粒径效应. 当Pt粒子粒径为3.2 nm时, Pt/C催化剂对乙醇的电催化氧化的质量比活性最佳. X射线光电子能谱(XPS)的研究显示, Pt/C催化剂对乙醇氧化的粒径效应与其零价Pt含量以及Pt粒子的比表面积密切相关.  相似文献   

16.
The steady ordered micro-ribbons of oxidized multi-walled carbon nanotubes (MWNTs) were obtained through micro-aperture PTFE membrane by vacuum filtration. After treatment by mixture of concentrated nitric acid and sulfuric acid, the surface functional groups modified MWNTs can be easily dispersed to form a homogeneous suspension. It is found that the steady micro-ribbons existed in the films obtained by vacuum filtration of the suspension. The filtration formed steady flow field and induced steady alignment of oxidized MWNTs. The chemical treatment of MWNTs forming strong interaction between MWNTs is necessity to keep steady of the micro-ribbons microstructure.  相似文献   

17.
Carbon aerogels (CAs) were prepared by sol‐gel polycondensation of resorcinol and formaldehyde with BET surface area of 616 m2 g?1 and the average pore size of 9.8 nm. The prepared CAs were used as supports for Pt nanoparticles for methanol oxidation in alkaline media. In comparison with Pt supported on commercial Vulcan XC‐72R carbon (Pt/C) electrocatalysts, Pt supported on CAs (Pt/CAs) electrocatalysts exhibited higher peak current density and more negative onset potential toward methanol oxidation. The effects of different parameters such as NaOH concentration, methanol concentration, and scan rate on the methanol oxidation reaction were investigated in detail. The results showed that the Pt/CAs electrocatalysts had promising application for methanol oxidation in alkaline media.  相似文献   

18.
尼龙/碳纳米管复合材料研究进展   总被引:2,自引:0,他引:2  
碳纳米管(CNTs)由于其独特的结构,较高的长径比,较大的比表面积,且具有超强的力学性能和良好的导热性,已经证明是塑料的非常优异的导电填料,聚合物基碳纳米管复合材料可望应用于材料领域的多个方面,尤其在汽车、飞机及其它飞行器的制造等军事和商业应用上带来革命性的突破。本文介绍了碳纳米管的结构形态和碳纳米管的制备、纯化、修饰方法及聚合物基碳纳米管复合材料的制备、性能,并综述了近几年来尼龙/碳纳米管复合材料的研究进展及应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号