首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of depletion of ground state Ti(a3F) and electronically excited state Ti(a5F) upon interactions with CH4, C2H2, C2H4, and C2H6 are studied in a fast-flow reactor at a He pressure of 0.70 Torr. No depletion of ground state Ti(a3F) was observed upon interaction with all hydrocarbons studied here. Two alkanes, CH4 and C2H6, were also quite inert for depletion of the excited state Ti(a5F), On the other hand, C2H2 and C2H4 deplete the excited state Ti(a5F) very efficiently. Rate constants were determined to be (266 ± 86) and (476 ± 88) × 10?12 cm3s?1 for Ti(a5F) + C2H4 and Ti(a5F) + C2H2, respectively. These large rate constants compared with the ground state Ti were explained by an electron donor-acceptor interaction model that works in the interaction between C2H4 or C2H2 and the excited state with unfilled 4s orbital.  相似文献   

2.
Abstract

This paper describes an H.P.L.C. method for the assay of gentamicin sulphate, utilising pre-column derivatisation with an ophthalaldehyde/thioglycollic acid reagent, ion-paired chromatography of the derivative on a Hypersil O.D.S. column and U.V. detection. The four major components of gentamicin are resolved (Gentamicins C1, C1a, C2 and C2a) and evidence is presented to show that the method is stability indicating. The application of this technique to formulated products is described and figures for precision and accuracy as well as stability results are given.  相似文献   

3.
The total synthesis of maremycins A, B, C1/C2, D1, and D2 is achieved starting from the natural amino acids l-isoleucine and S-methyl-l-cysteine, in which the total synthesis of maremycins B, C1/C2, and D2 is accomplished for the first time. The synthesis features a position-selective intramolecular bromination process for the synthesis of key chiral building block, a Pd-catalyzed indole synthesis for the preparation of (2S,3S)-β-methyltryptophan and hydroxylation of oxindoles by molecular oxygen. In addition, the protocol for conversion of maremycins A and B to maremycins C and D was improved.  相似文献   

4.
《Tetrahedron: Asymmetry》2001,12(14):1961-1964
The absolute configurations of the palmarumycins C9 1a, C10 2, and C12 3 were assigned by comparison of the quantum-mechanically calculated with the experimental CD spectra as (2R,3S,4aS,8aR), (2R,3R,4S,4aS,8aR), and (2R,3R,4R), respectively.  相似文献   

5.
CCl2 free radicals were produced by a pulsed dc discharge of CCl4 in Ar. Ground electronic state CCl2(X) radicals were electronically excited to the A1B1 (0,4,0) vibronic state with an Nd:YAG laser pumped dye laser at 541.52 nm. Experimental quenching data of excited CCl2(A1B1 and a3B1) by O2, N2, NO, N2O, NH3, NH(CH3)2, NH(C2H5)2, and N(C2H5)3 molecules were obtained by observing the time‐resolved total fluorescence signal of the excited CCl2 radical in a cell, which showed a superposition of two exponential decay components under the presence of quencher. The quenching rate constants kA of CCl2(A) state and ka of CCl2(a) state were derived by analyzing the experimental data according to a proposed three‐level model to deal with the CCl2(X1A1, A1B1, a3B1) system. The formation cross sections of complexes of electronically excited CCl2 radicals with O2, N2, NO, N2O, NH3, and aminated molecules were calculated by means of a collision‐complex model. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 351–356, 2002  相似文献   

6.
Rare Earth Halides Ln4X5Z. Part 1: C and/or C2 in Ln4X5Z The compounds Ln4X5Cn (Ln = La, Ce, Pr; X = Br, I and 1.0 < n < 2.0) are prepared by the reaction of LnX3, Ln metal and graphite in sealed Ta‐ampoules at temperatures 850 °C < T < 1050 °C. They crystallize in the monoclinic space group C2/m. La4I5C1.5: a = 19.849(4) Å, b = 4.1410(8) Å, c = 8.956(2) Å, β = 103.86(3)°, La4I5C2.0: a = 19.907(4) Å, b = 4.1482(8) Å, c = 8.963(2) Å, β = 104.36(3)°, Ce4Br5C1.0: a = 18.306(5) Å, b = 3.9735(6) Å, c = 8.378(2) Å, β=104.91(2)°, Ce4Br5C1.5: a = 18.996(2) Å, b = 3.9310(3) Å, c = 8.282(7) Å, β = 106.74(1)°, Pr4Br5C1.3: a = 18.467(2) Å, b = 3.911(1) Å, c = 8.258(7) Å, β = 105.25(1)° and Pr4Br5C1.5: a = 19.044(2) Å, b = 3.9368(1) Å, c = 8.254(7) Å, β = 106.48(1)°. In the crystal structure the lanthanide metals are connected to Ln6‐octahedra centered by carbon atoms or C2‐groups. The Ln6‐octahedra are condensed via opposite edges to chains and surrounded by X atoms which interconnect the chains. A part n of isolated C‐atoms is substituted by 1‐n C2‐groups. The C‐C distances range between 1.26 and 1.40Å. In the ionic formulation (Ln3+)4(X?)5(C4?)n(C2m?)1?n·e? with 0 < n < 1 and m = 2, 4, 6 (C22?, C24? C26?), there are 1 < e? < 5 electrons centered in metal‐metal bonds.  相似文献   

7.
Pr6C2‐Bitetrahedra in Pr6C2Cl10 and Pr6C2Cl5Br5 The compounds Pr6C2Cl10 and Pr6C2Cl5Br5 are prepared by heating stoichiometric mixtures of Pr, PrCl3, PrBr3 and C in sealed Ta capsules at 810 ? 820 °C. They form bulky transparent yellow to green and moisture sensitive crystals which have different structures: space groups C2/c, (a = 13.687(3) Å, b = 8.638(2) Å, c = 15.690(3) Å, β = 97.67(3)° for Pr6C2Cl10 and a = 13.689(1) Å, b = 10.383(1) Å, c = 14.089(1) Å, β = 106.49(1)° for Pr6C2Cl5Br5). Both crystal structures contain C‐centered Pr6C2 bitetrahedra, linked via halogen atoms above edges and corners in different ways. The site selective occupation of the halogen positions in Pr6C2Cl5Br5 is refined in a split model and analysed with the bond length‐bond strength formalism. The compound is further characterized via TEM investigations and magnetic measurements (μeff = 3.66 μB).  相似文献   

8.
Abstract

The title compounds 1 and 2 (both C15O15NH21) crystallized in the monoclinic space group P21 (Z = 2) with a=8.864(1), b=8.346(1), c =13.569(1)Å, β =114.12(1), V=918.1(2)A3, D(calc) = 1.358 g/cc for compound 1, and a=15–045(1), b=8.106(1), c=7.491(1)Å, β =97.23(1)°, V=906.4(3)Å3 D(calc)= 1.375 g/cc, for compound 2. The structures were solved by direct methods and refined by the full-matrix least squares technique to R indices of 0.010 and 0.046, respectively. Both compounds are in the α ? D configuration and adopt the unusual 2C5, (1C4) chair conformation with the carbamoyl groups on the anomeric carbon atoms equatorially oriented. In this conformation the orientations of the substituents are 2e, 3a, 4a, 5a and 6a in 1 and 2e, 3a, 4a, 5e and 6a in 2 which leads to unfavorable 1,3-diaxial interactions. The “reverse anomeric effect” which induces the 2c5 chair conformation in these compounds, may have its origin in the unfavorable steric interactions found in the 5c2 (4C1) conformation where the carbamoyl group is axially oriented. Furthermore, the 2C5 conformation is stabilized by the N-H … O intramolecular hydrogen bond between the carbamoyl nitrogen atom and the pyranosyl ring oxygen atom. Semi-empirical energy calculations reveal that the rotational freedom of the carbamoyl group is greater for the equatorial orientation (2C5) than for the axial orientation (5C2).  相似文献   

9.
The First Bromide with Trigonal-Bipyramidal [M5(C2)] Clusters: [Pr5(C2)]Br9 The bromide [Pr5(C2)]Br9 is obtained via metallothermic reduction of PrBr3 with rubidium in the presence of praseodymium and carbon in a sealed niobium container at 730°C as dark red single crystals. [Pr5(C2)]Br9 crystallizes in the monoclinic crystal system [P21/n; Z = 4; a = 1 006.9(1); b = 1 886.1(1); c = 1 045.9(1) pm; β = 108.130(1)°; Rint = 0.059; R1 = 0.038; wR2 = 0.077]. One edge in the base of the trigonal bipyramid in [Pr5(C2)]Br9 is usually long (440 pm). It is not brigded by a Bri ligand. In addition to the eight Bri, the cluster is coordinated by 12 terminal ligands (Bra). Except for the known Bra–a–a and Bri–a connections, Bri–a–a brigdes are observed for the first time for trigonal-bipyramidal clusters.  相似文献   

10.
Summary This investigation describes a thin-layer chromatographic method for the quantitative determination of netilmicin and gentamicins C1, C1a, C2 and C2a in pharmaceutical preparations. The individual components are separated on C8 or C18 reversed phase layers with a mobile phase consisting of methanol and ammonia with added lithium chloride. After optimization of the post-chromatographic derivatization with 2,2-diphenyl-1-oxa-3-oxonia-2-boratanaphthalene (DOOB) quantitative determination takes place directly on the layer. The calibration curves are linear for netilmicin in the range 50–250 ng/zone and for the gentamicin components in the range 30–140 ng/zone (this corresponds to 100 to 400 ng/zone total complex). The determination limits per zone are 50 ng total gentamicin complex and 10 ng netilmicin per zone. No clean-up is required for analysis because of the great specificity of the derivatization reaction. The reproducibility of the method for independently carried out measurement series can be described by coefficients of variation between CV = ±1.7%–4.2%.
Quantitative fluorometrische in situ-Bestimmung von Netilmicin und 4 Gentamicinen auf DC-RP-Schichten

Teilergebnis der Dissertation von F. R. Kunz  相似文献   

11.
Synthesis and Characterization of the Fullerene Co-Crystals C60 · 12 C6H12, C70 · 12 C6H12, C60 · 12 CCl4, C60 · 2CHBr3, C60 · 2CHCl3, C60 · 2H2CCl2 By crystallization of fullerenes from non-polar solvents (C6H12, CCl4, CHBr3, CHCl3, H2CCl2) compounds of the following compositions were obtained: C60 · 12C6H12, C70 · 12C6H12, C60 · 12CCl4, C60 · 2CHCl3, C60 · 2CHBr3 and C60 · 2H2CCl2. Lattice parameters have been determined by X-ray diffraction of powder samples; according to single-crystal examinations on C60 · 12C6H12, C60 · 12CCl4 and C60 · 2CHBr3 the fullerene is orientationally disordered. C60 · 12C6H12, cubic, a = 28.167(1) Å; C70 · 12C6H12, cubic, a = 28.608(2) Å; C60 · 12CCl4, cubic, a = 27.42(1) Å; C60 · 2CHBr3, hexagonal, a = 10.212(1), c = 10.209(1) Å; C60 · 2CHCl3, hexagonal, a = 10.08(1), c = 10.11(2) Å; C60 · 2H2CCl2, tetragonal, a = 16.400(1) Å, c = 11.645(7) Å.  相似文献   

12.
Pulsed laser photolysis, time-resolved laser-induced fluorescence experiments have been carried out on the reactions of CN radicals with CH4, C2H6, C2H4, C3H6, and C2H2. They have yielded rate constants for these five reactions at temperatures between 295 and 700 K. The data for the reactions with methane and ethane have been combined with other recent results and fitted to modified Arrhenius expressions, k(T) = A′(298) (T/298)n exp(?θ/T), yielding: for CH4, A′(298) = 7.0 × 10?13 cm3 molecule?1 s?1, n = 2.3, and θ = ?16 K; and for C2H6, A′(298) = 5.6 × 10?12 cm3 molecule?1 s?1, n = 1.8, and θ = ?500 K. The rate constants for the reactions with C2H4, C3H6, and C2H2 all decrease monotonically with temperature and have been fitted to expressions of the form, k(T) = k(298) (T/298)n with k(298) = 2.5 × 10?10 cm3 molecule?1 s?1, n = ?0.24 for CN + C2H4; k(298) = 3.4 × 10?10 cm3 molecule?1 s?1, n = ?0.19 for CN + C3H6; and k(298) = 2.9 × 10?10 cm3 molecule?1 s?1, n = ?0.53 for CN + C2H2. These reactions almost certainly proceed via addition-elimination yielding an unsaturated cyanide and an H-atom. Our kinetic results for reactions of CN are compared with those for reactions of the same hydrocarbons with other simple free radical species. © John Wiley & Sons, Inc.  相似文献   

13.
Ca1–xB2C4 (x ~ 0.08) and Ca1–xB2C6 (x ~ 0.04) are two compounds containing heterographene‐B,C nets which were prepared by solid state synthesis and structurally characterized by X‐ray powder diffraction data. Both compounds crystallize in the space group P6/ mmm (No. 191). The lattice constants are a = 4.55971(5) Å and c = 4.4020(1) Å for CaB2C4 and a = 2.58390(5) Å, c = 4.43597(8) Å for CaB2C6. The calcium atoms are intercalated between the heterographene (B,C) nets. The calcium atom distribution in Ca1–xB2C6 is disordered, leading to diffuse scattering. A model for this disorder was developed that matches well the observed diffuse scattering observed in the electron diffraction pattern. For Ca1–xB2C6 and its decomposition products magnetic and electric properties are being reported.  相似文献   

14.
Six secondary amine palladacycles bearing monodentate ligands (1a, 2a), 1,2-bis(diphenylphosphino)ethane (dppe) and 1,3-bis(diphenylphosphino)propane (dppp) containing bridging and bidentate ligands (1b, 2bd), and four C,C-type phosphorus ylide complexes containing thiourea (tu) (3a), phenyl isothiocyanate (4a), and bridging and terminal azide groups (5 and 5a) have been synthesized. Resulting complexes have been characterized by elemental analyses, IR, 1H-, 13C{1H}-, and 31P{1H}-NMR spectroscopy with single crystal X-ray structure determination of 1a and 2a. The Pd in 1a and 2a occupies the center of a slightly distorted square planar environment formed by Caryl, Namine, Npyridine, and Cl. The catalytic efficiency of complexes showed that in most cases, amine palladacycles display better catalytic activities than the phosphorus ylide Pd(II) complexes. Comparison between bidentate and bridging dppe complexes showed that dppe-bridged dimer 2d has higher catalytic activity than dppe bidentate complex.  相似文献   

15.
Extraction of fullerenes from carbon soot by trichloroethylene has been studied. We have found that C60 forms a solvate with trichloroethylene (C60 · C2HCl3:a=31.31(1);b= 10.156(4);c=10.146(4) Å;V=3228.6 Å3,Z=4,d calc=1.752 g cm–3, orthorhombic symmetry). Its thermal stability has been studied using TG and DSC. A phase transition of the first order at 167 K has been detected.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1248–1250, July, 1994.The authors are grateful to V. P. Bubnov and I. S. Krainskii for providing them with the samples of fulle-rene-containing carbon soot, and to M. G. Kaplunov and A. V. Zvarykina for assistance in the work.This work was carried out with the financial support of the Russian Foundation for Basic Research, Project Nos. 93-03-18705 and 93-03-5650.  相似文献   

16.
The transition-metal-carbonyl-induced cyclodimerization of 5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene is strongly affected by substitution at C(1) While 5,6-dimethylidene-7-oxabicyclo[2.2.1]hept–2-ene-l-methanol ( 7 ) refused to undergo [4 + 2]-cyclodimerization in the presence of [Fe2(CO)9] in MeOH, 1-(dimethoxymethyl)-5,6-di-methylidene-7-oxabicyclo[2.2.1]hept-2-ene ( 8 ) led to the formation of a 1.7:1 mixture of ‘trans’ ( 19, 21, 22 ) vs. ‘cis’ ( 20, 23, 24 ) products of cyclodimerization together with tricarbonyl[C, 5,6, C-η-(l-(dimethoxymethyl)-5,6-di-methylidenecyclohexa-1,3-diene)]iron ( 25 ) and tricarbonyl[C,3,4, C-η-(methyl 5-(dimethoxymethyl)-3,4-di-methylidenecyclohexa-1,5-diene-l-carboxylate)]iron ( 26 ). The structures of products 19 and of its exo ( 21 ) and endo ( 22 ) [Fe(CO)3(1,3-diene)]complexes) and 20 (and of its exo ( 23 ) and endo (24) (Fe(CO)3(1,3-diene)complexes) were confirmed by X-ray diffraction studies of crystalline (1RS, 2SR, 3RS, 4RS, 4aRS, 9aSR)-tricarbonyl[C, 2,3, C-η-(1,4-epoxy-1,5-bis(dimethoxymethyl])-2,3-dimethylidene-1,2,3,4,4a,9,9a,10-octahydroanthracene)iron ( 21 ). In the latter, the Fe(CO)3(1,3-diene) moiety deviates significantly from the usual local Cs symmetry. Complex 21 corresponds to a ‘frozen equilibrium’ of rotamers with η-alkyl, η3-allyl bonding mode due to the acetal unit at the bridgehead centre C(1).  相似文献   

17.
Sheets of La6(C2) Octahedra in Lanthanum Carbide Chlorides – undulated and plane The reaction of Ln, LnCl3 (Ln = La, Ce) and C yields the hitherto unknown compounds La8(C2)4Cl5, Ce8(C2)4Cl5, La14(C2)7Cl9, La20(C2)10Cl13, La22(C2)11Cl14, La36(C2)18Cl23 and La2(C2)Cl. The gold‐ resp. bronze‐coloured metallic compounds are sensitive to moisture. The reaction temperatures are 1030 °C, 1000 °C, 970 °C, 1020 °C, 1020 °C, 1080 °C and 1030 °C in the order of compounds given, which mostly crystallize in the monoclinic space group P21/c with a = 7.756(1) Å, b = 16.951(1) Å, c = 6.878(1) Å, β = 104.20(1)° (La8(C2)4Cl5), a = 7.669(2) Å, b = 16.784(3) Å, c = 6.798(1) Å, β = 104.05(1)° (Ce8(C2)4Cl5), a = 7.669(2) Å, b = 16.784(3) Å, c = 6.789(1) Å, β = 104.05(3)° (La20(C2)10Cl13), a = 7.770(2) Å, b = 47.038(9) Å, c = 6.901(1) Å, β = 104.28(3)° (La22(C2)11Cl14) and a = 7.764(2) Å, b = 77.055(15) Å, c = 6.897(1) Å, β = 104.26(3)° (La36(C2)18Cl23), respectively. La14(C2)7Cl9‐(II) crystallizes in Pc with a = 7.775(2) Å, b = 29.963(6) Å, c = 6.895(1) Å, β = 104.21(3)° and La2(C2)Cl in C2/c with a = 14.770(2) Å, b = 4.187(1) Å, c = 6.802(1) Å, β = 101.50(3)°. The crystal structures are composed of distorted C2 centered La‐octahedra which are condensed into chains via common edges. Three and four such chains join into ribbons, and these are connected into undulated layers with Cl atoms between them. The variations of the structure principle are analyzed systematically.  相似文献   

18.
A new molecular complex of fullerene with tetramethyltetraselenafulvalene (TMTSF), C60·TMTSF·2CS2, (1) was synthesized. The structure and composition of the complex were established by X-ray diffraction analysis. The crystals of C60·C10H12Se4·2CS2 are monoclinic:a=15.407(2),b=12.934(2),c=12.026(2) Å β=108.39(3)°,V=2274.1(6) Å3, space groupCm, Z=2,d calc=1.929 g cm?3,R=0.047. The crystal structure of 1 consists of layers. Layers formed by fullerene and CS2 molecules alternate with layers of TMTSF molecules. Peculiarities of the crystal structure of 1 are the nonplanar conformation of TMTSF molecules and the absence of shortened C…C contacts between adjacent fullerenes molecules. The energy of intermolecular TMTSF…C60 interactions in the crystal was estimated.  相似文献   

19.
Aluminium Organyls with Pentacoordinate Aluminium: Syntheses and Molecular Structures of [AlX2{2,6-(NEt2CH2)2C6H3}] (X = Cl, Et, H) The reaction of [Li{2,6-(NEt2CH2)2C6H3}]2 with AlCl3 or Et2AlCl gives [AlX2{2,6-(NEt2CH2)2C6H3}] [X = Cl ( 1 ), Et ( 2 )] in good yield. 1 reacts with NaH in toluene to give [AlH2{2,6-(NEt2CH2)2C6H3}] ( 3 ). 1–3 were characterised spectroscopically (1H, 13C, 27Al n.m.r., i.r., mass spectroscopy). In solution at room temperature 1–3 exhibit dynamic behaviour. For 1 and 3 this can be frozen out below 278 K (1H n.m.r.), indicating the presence of monomeric molecules with pentacoordinate Al at low temperature. Such species are also observed in the solid state as shown by an X-ray structure determination on 1 (monoclinic space group P21/n, a = 9.7325(14), b = 13.552(5), c = 28.858(7) Å, β = 99.57(2)°, V = 3753(2) Å3, Z = 8, at 223(2) K) and 2 (monoclinic space group C2/c, a = 15.0045(12), b = 9.2986(8), c = 14.9955(12) Å, β =99.512(1)°, Z = 4, at 223(2) K).  相似文献   

20.
Rb{Pr6(C)2}I12 was obtained from a mixture of RbI, PrI3, Pr and C as black single crystals at elevated temperatures. The black crystals are triclinic, (no. 2), a = 960.1(2), b = 957.0(2), c = 1003.4(2) pm, α = 71.74(2), β = 70.69(2), γ = 72.38(2)°, V = 805.6(3) 106 pm3, Z = 1; R1 = 0.0868 for all 2749 measured independent reflections. Rb{Pr6(C)2}I12 contains {Pr6(C2)} clusters isolated from each other, surrounded by twelve edge‐bridging and six terminal ligands. The [{Pr6(C)2}Ii12Ia6]? units are connected via i‐a/a‐i bridges according to {Pr6C2}Ii6/1Ii‐a6/2Ia‐i6/2 with rubidium ions occupying twelve‐coordinate interstices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号