首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Torlon®, a polyamide–imide polymer, was used for high-pressure CO2 separations, as it can form inter- and intra-chain hydrogen bonding that may provide stability against plasticization. Asymmetric hollow fiber membranes with a defect-free selective skin were successfully formed from Torlon® using a dry–wet spinning process. Dope and spinning parameters were optimized to obtain these fibers, which had CO2/CH4 selectivity of 44 and O2/N2 selectivity of 7.7. These selectivities are about 85% of the intrinsic (dense film) value of 52 for CO2/CH4 and 90% of the intrinsic value of 8.3 for O2/N2, respectively. Based on analyses presented, the reduced selectivities are attributed to substructure resistance rather than actual skin layer defects. Macrovoids, which compromise the strength of the fiber, were reduced by increasing the polymer concentration. The resulting fiber could withstand up to 2000 psi of N2, and a CO2 permeation study indicates that this fiber can perform selective separations under supercritical conditions of 1100 psi of CO2 at 35 °C.  相似文献   

2.
Fundamental understanding of the material science and rheological engineering to fabricate Torlon® 4000T-MV and 4000TF hollow fiber membranes with an ultra-thin and defect-free dense-selective layer for gas separation has been revealed. We have firstly investigated the rheology of Torlon® 4000T-MV and 4000TF dope solutions, and then determined the effect of temperature-correlated shear and elongational viscosities on the formation of Torlon® fibers for gas separation. Interestingly, Torlon® 4000T-MV and 4000TF possess different rheological characteristics: the elongational viscosity of Torlon® 4000T-MV/NMP solution shows strain thinning, while Torlon® 4000TF/NMP solution shows strain hardening. The balanced viscoelastic properties of dope solutions, which are strongly dependent on the spinning temperature, have been found to be crucial for the formation of a defect-free dense layer. The optimum rheological properties to fabricate Torlon® 4000T-MV/NMP hollow fibers appear at about 48–50 °C, and the resultant fibers have an O2/N2 selectivity of 8.37 and an apparent dense layer thickness of 781 Å. By comparison, the best Torlon® 4000TF fibers were spun at 24 °C with an O2/N2 selectivity of 8.96 and a dense layer of 1116 Å. The CO2/CH4 selectivity of the above two Torlon® variants is 47 and 53.5, respectively.  相似文献   

3.
Faujasite-type zeolite membranes were reproducibly synthesized by hydrothermal reaction on the outer surface of a porous α-alumina support tube of 30 or 200 mm in length. The membrane properties were evaluated by CO2 separation from an equimolar mixture of CO2 and N2 at a permeation temperature of 40°C. CO2 permeance and CO2/N2 selectivity of the NaY-type membranes were in the ranges of 0.4×10−6–2.5×10−6 mol m−2 s−1 Pa−1 and 20–50, respectively. The NaY-type membranes were ion-exchanged with alkali and alkaline earth cations. The LiY-type membrane showed the highest N2 permeance and the lowest CO2/N2 selectivity. The KY-type membrane gave the highest CO2/N2 selectivity. The NaY-type membrane was stable against exposure to air at 400°C. NaX-type zeolite membranes, formed by decreasing the ratio of SiO2/Al2O3 in the starting solution, exhibited lower CO2 permeances and higher CO2/N2 selectivities than those of the NaY-type zeolite membranes.  相似文献   

4.
Incompatibility between filler and polymer chains accompanied by particle agglomeration has a detrimental effect on the performance of mixed matrix membranes (MMMs). To obviate intermolecular forces of different additives, functional groups (-COOH, –NCO, and –NH2) were grafted on the surface of multi-walled carbon nanotubes (MWCNTs) which were then incorporated as fillers in the poly(ether-block-amide) (PEBA) polymeric matrix in the range of 0.1–1 wt% loading. CO2 permeability and ideal CO2/N2 and CO2/CH4 selectivity of MMMs was compared with the neat membrane, and the results revealed favorable enhancement and surpassed CO2/N2 Robeson's upper bound under 4–10 bar in the range of 15–55 °C. Mixed gas separation performance of MMMs, which is of vital importance in industrial applications, was also investigated. The results indicate that MWCNT-NCO created superior grafts with the polymer chains, and MMMs with this additive had a better gas separation performance with high mechanical and thermal stability.  相似文献   

5.
Integrally skinned asymmetric poly(vinylidene fluoride) hollow fibre membranes were prepared and characterized. The effects of phase inversion methods (dry-wet or wet) and spinning conditions, such as the type of solvent (NMP, DMAc), the concentration of polymer in dope solution, temperature of the external coagulation bath and the composition of the inner coagulant on the morphology and on the formation of a dense skin layer were investigated. The structure of the membranes was analyzed by scanning electron microscopy and the gas permeation properties with six different gases (He, H2, N2, O2, CH4 and CO2) were measured at 25 °C to confirm the integrity of the selective skin layer. Under the proper conditions highly selective and permeable PVDF hollow fibre membranes were thus obtained by dry-wet spinning of a 30 wt.% PVDF solution in DMAc, using hot water (50 °C) as the external coagulant and a bore fluid of pure water as the internal coagulant. The best membrane had a selective outer skin with an effective thickness of approximately 0.2 μm. The ideal selectivity of the hollow fibres approached or even exceeded the intrinsic ideal selectivity of a dense PVDF film, for instance the selectivity for He over N2 was 86.2 for the hollow fibre, whereas it was 83.5 for a dense PVDF reference film. DSC and FT-IR/ATR analysis indicated a higher fraction of the β-crystal phase in the selective skin and a high overall crystallinity than in the melt-processed film. The latter explains the relatively high selectivity and low permeability of the membranes. Intrinsic polymer properties make the membranes also suitable for vapour transport than for gas separation.  相似文献   

6.
Mixed-matrix membranes were prepared from Matrimid® and mesoporous ZSM-5 nanoparticles containing crystalline ZSM-5. The ideal selectivity for H2/N2 separation increased from 79.6 for pure Matrimid® to 143 at 10% loading, while the selectivity of O2/N2 increased from 6.6 for pure Matrimid® to 10.4 at 20% loading. The ideal H2/CH4 separation factor increased from 83.3 to 169 at 20% loading. The results suggest that the mesopores of the ZSM-5 material provide good contact between the nanoparticles and the polymer, since the polymer chains can penetrate into the mesopores. The micropores of ZSM-5 crystals provide size and shape selectivity.  相似文献   

7.
In the present work, membranes from commercially available Pebax® MH 1657 and its blends with low molecular weight poly(ethylene glycol) PEG were prepared by using a simple binary solvent (ethanol/water). Dense film membranes show excellent compatibility with PEG system up to 50 wt.% of content. Gas transport properties have been determined for four gases (H2, N2, CH4, CO2) and the obtained permeabilities were correlated with polymer properties and morphology of the membranes. The permeability of CO2 in Pebax®/PEG membrane (50 wt.% of PEG) was increased two fold regarding to the pristine Pebax®. Although CO2/N2 and CO2/CH4 selectivity remained constant, an enhancement of CO2/H2 selectivity (∼11) was observed. These results were attributed to the presence of EO units which increases CO2 permeability, and to a probable increase of fractional free-volume. Furthermore, for free-volume discussion and permeability of gases, additive and Maxwell models were used.  相似文献   

8.
Matrimid/polysulfone (PSf) dual-layer hollow fiber membranes were fabricated by using co-extrusion and dry-jet wet-spinning phase-inversion techniques. The effects of the spinning dope composition, spinneret dimension, spinneret temperature and the air gap distance on the hollow fiber membranes separation performance were studied. Aging phenomenon was also studied. After coated by 3 wt% silicon solution, the hollow fiber membranes have an O2/N2 selectivity of 7.55 at 25 °C, 506.625 kPa which exceeds the intrinsic value of Matrimid. The membranes have an O2 permeance of 9.36 GPU with an apparent dense-layer thickness of 1421 Å calculated from the O2 permeability. SEM images show the high porosity underneath the dense skin. It indicates that non-solvent addition is not necessary in the inner spinning dope to induce the macroviod formation. The binodals of the Matrimid/solvent/H2O and PSf/solvent/H2O indicate that the composition of the spinning dope plays an important role in the structure and the gas separation performance of the dual-layer hollow fiber membranes. The delayed demixing of the inner spinning dope may fabricate low resistance support layers in the dual-layer hollow fiber membranes.  相似文献   

9.
Continuous microporous membranes are widely studied for gas separation, due to their low energy premium and strong molecular specificity. Porous aromatic frameworks (PAFs) with their exceptional stability and structural flexibility are suited to a wide range of separations. Main-stream PAF-based membranes are usually prepared with polymeric matrices, but their discrete entities and boundary defects weaken their selectivity and permeability. The synthesis of continuous PAF membranes is still a major challenge because PAFs are insoluble. Herein, we successfully synthesized a continuous PAF membrane for gas separation. Both pore size and chemistry of the PAF membrane were modified by ion-exchange, resulting in good selectivity and permeance for the gas mixtures H2/N2 and CO2/N2. The membrane with Br? as a counter ion in the framework exhibited a H2/N2 selectivity of 72.7 with a H2 permeance of 51844 gas permeation units (GPU). When the counter ions were replaced by BF4?, the membrane showed a CO2 permeance of 23058 GPU, and an optimized CO2/N2 selectivity of 60.0. Our results show that continuous PAF membranes with modifiable pores are promising for various gas separation situations.  相似文献   

10.
Fabrication of recast Nafion®-117 membrane using the dipolar aprotonic solvent will normally lead to a random matrix. On the contrary, when a designed amount of vinyl-pendant octasiloxane (Q8M8V) cubic molecules was included into the Nafion® matrix during the recasting process and then subjected to polymerization, a nonrandom matrix was obtained. This paper provides an insight into the matrix-formatting role of rigid poly(Q8M8V) blocks, generated in situ in Nafion® matrix, according to thermal analyses (thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and Differential Scanning Calorimetry (DSC)) and electron microscopic images of the resulting composite matrix. The P(Q8M8V) played a role in restricting random extensions of proton-conducting channels (PCCs) and promoted ordered assembling of Nafion® molecules. As a result, compared with the recast pristine Nafion® membrane, the composite membranes containing P(Q8M8V) of 5–15 wt.% manifested obvious improvement on both repression of methanol permeability and promotion of power density output of the single direct methanol fuel cell (DMFC).  相似文献   

11.
New polysulfone (PSF) copolymers from bis(4-fluorophenyl)sulfone and based on equimolar mixtures of the rigid/compact naphthalene moiety with bulky connectors from bisphenols: tetramethyl, hexafluoro, and tetramethyl hexafluoro, respectively, were synthesized to measure significant physical properties related to the gas separation field. The flexible and transparent polymer dense films TM-NPSF, HF-NPSF and TMHF-NPSF show high glass transition temperatures Tg  230 °C and high decomposition temperatures TD  400 °C (10 wt.% loss, in air). Free volume cavity sizes, as determined by PALS, are in the range of 94–139 Å3. Their gas permeability and selectivity combinations of properties, measured at 35 °C and 2 atm, are very attractive since their selectivity for the pair of gases H2/CH4, O2/N2, and CO2/CH4 are higher than those for commercial PSF membranes, having similar or superior permeability coefficients for the most permeable gases H2, O2, and CO2. Especially important is the tetramethyl naphthalene polysulfone TM-NPSF membrane which reports selectivities for H2/CH4, O2/N2 and CO2/CH4 of 122, 7.6 and 38 with corresponding permeability coefficients (in Barrers) of 17 for H2, 1.2 for O2, and 5.2 for CO2. These results are interpreted in terms of free volume size and glass transition temperature together with the respective contribution of gas solubility and diffusivity to the overall selectivity coefficients.  相似文献   

12.
Composite hollow fibers membranes were prepared by coating poly(phenylene oxide) (PPO) and polysulfone (PSf) hollow fibers with high molecular polyvinylamine (PVAm). Two procedures of coating hollow fibers outside and respective inside were investigated with respect to intrinsic PVAm solution properties and hollow fibers geometry and material.The influence of operating mode (sweep or vacuum) on the performances of membranes was investigated. Vacuum operating mode gave better results than using sweep because part of the sweep gas permeated into feed and induced an extra resistance to the most permeable gas the CO2. The composite PVAm/PSf HF membranes having a 0.7–1.5 μm PVAm selective layer, showed CO2/N2 selectivity between 100 and 230. The selectivity was attributed to the CO2 facilitated transport imposed by PVAm selective layer. The CO2 permeance changed from 0.006 to 0.022 m3(STP)/(m2 bar h) in direct correlation with CO2 permeance and separation mechanism of the individual porous supports used for membrane fabrication. The multilayer PVAm/PPO membrane using as support PPO hollow fibers with a 40 nm PPO dense skin layer, surprisingly presented an increase in selectivity with the increase in CO2 partial pressure. This trend was opposite to the facilitated transport characteristic behaviour of PVAm/porous PSf. This indicated that PVAm/PPO membrane represents a new membrane, with new properties and a hybrid mechanism, extremely stable at high pressure ratios. The CO2/N2 selectivity ranged between 20 and 500 and the CO2 permeance from 0.11 to 2.3 m3(STP)/(m2 bar h) depending on the operating conditions.For both PVAm/PSf and PVAm/PPO membranes, the CO2 permeance was similar with the CO2 permeance of uncoated hollow fiber supports, confirming that the CO2 diffusion rate limiting step resides in the properties of the relatively thick support, not at the level of 1.2 μm thin and water swollen PVAm selective layer. A dynamic transfer of the CO2 diffusion rate limiting step between PVAm top layer and PPO support was observed by changing the feed relative humidity (RH%). The CO2 diffusion rate was controlled by the PPO support when using humid feed. At low feed humidity the 1.2 μm PVAm top layer becomes the CO2 diffusion rate limiting step.  相似文献   

13.
In this study, graphene nanosheets (GNs) were incorporated into polyethersulfone (PES) by phase inversion approach for preparing PES-GNs mixed matrix membranes (MMMs). To investigate the impact of filler content on membrane surface morphology, thermal stability, chemical composition, porosity and mechanical properties, MMMs were constructed with various GNs loadings (0.01, 0.02, 0.03, and 0.04 wt%). ?The performance of prepared MMMs was tested for separation and selectivity of CO2, N2, H2 and CH4 gases at various pressures from 1 to 6 bar and temperature varying from 20 to 60 °C. It was observed that, compared to the pristine PES membrane, the prepared MMMs significantly improved the gas separation and selectivity performance with adequate mechanical stability. The permeability of CO2, N2, H2 and CH4 for the PES + 0.04 wt% GNs increases from 9 to 2246, 11 to 2235, 9 to 7151, and 3 to 4176 Barrer respectively, as compared with pure PES membrane at 1 bar and 20 °C due to improving the membrane absorption and porosity. In addition, by increasing the pressure, the permeability and selectivity of CO2, N2, H2 and CH4 are increased due to the increased driving force for the transport of gas via membranes. Furthermore, the permeability of CO2, N2, H2 and CH4 increased by increasing the temperature from 20 to 60 °C due to the plasticization in the membranes and the improvement in polymer chain movement. This result proved that the prepared membranes can be used for gas separation applications.  相似文献   

14.
A diblock copolymer ionomer containing a rubbery poly(dimethylsiloxane) block has been developed as a proton exchange membrane for direct methanol fuel cell (DMFC). The partially sulfonated polystyrene-b-poly(dimethylsiloxane) (sPS-b-PDMS) membrane with 38% sulfonation degree exhibited 3 times lower methanol permeability and 2.6 times higher membrane selectivity (proton conductivity/methanol permeability) compared to Nafion® 115 at 25 °C. Coexistence of microphase domains and ionic clusters was confirmed from the morphological studies by small-angle X-ray scattering and tapping-mode atomic force microscopy. Gas chromatographic analysis revealed that water/methanol selectivity of sPS-b-PDMS was 20 times higher than that of Nafion® 115. Such a high water/methanol selectivity can be attributed to the existence of PDMS microdomains minimizing methanol permeation through hydrophilic ion channels. sPS-b-PDMS membranes were fabricated into membrane electrode assembly (MEA), and air-breathing DMFC test for these MEAs showed a better performance compared to the MEA composed of Nafion® 115.  相似文献   

15.
《先进技术聚合物》2018,29(2):874-883
The concept of mixed matrix membrane comprising dispersed inorganic fillers into a polymer media has revealed appealing to tune the gas separation performance. In this work, the membranes were prepared by incorporation of mesoporous silica into polyurethane (PU). Mesoporous silica particles with different pore size and structures, MCM‐41, cubic MCM‐48 and SBA‐16, were synthesized by templating method and functionalized with 3‐aminopropyltriethoxysilane (APTES). High porosity and aminated surface of the mesoporous silica enhance the adhesion of the particles to the PU matrix. The SEM and FTIR results showed strong interactions between the particles and the PU chains. Moreover, the thermal stability of the hybrid PUs improved compared to the pure polymer. Gas transport properties of the membranes were measured for pure CO2, CH4, O2, and N2 gases at 10 bar and 25°C. The results showed that the gas permeabilities enhanced with increasing in the loading of modified mesoporous silica particles. High porosity and amine‐functionalized particles render opportunities to enhance the gas diffusivity and solubility through the membranes. The enhanced gas transport properties of the mixed matrix membranes reveal the advantages of mesoporous silica to improve the gas permeability (CO2 permeability up to ~70) without scarifying the gas selectivity (α(CO2/N2)~ 30 for 5 wt% SBA‐16 content).  相似文献   

16.
A novel crystalline nano cellulose (CNC) and polyvinyl amine (PVAm) based nanocomposite membranes were synthesized and evaluated for biogas upgrading. Different concentrations of CNC was incorporated in 3 wt % PVAm solution on commercial polysulfone (PSf) sheet using dip coating method. The effect of feed pressure (5, 10 and 15 bar) was investigated for the CO2/CH4 separation. The incorporation of CNC increased the crystallinity of membranes. The thickness of selective layer enhanced to 2.16 μm from 1.5 μm with increasing concentration of CNC. However, degree of swelling reduced from 75.88% to 68.93 with CNC concentration at 1.5 wt%. The best results were shown by PVAm membrane with 1 wt % CNC concentration i.e. CO2 permeance of 0.0216 m3(STP)/m2.bar.hr and selectivity (CO2/CH4) of 41.The permeance decreased approximately 1.8 folds for PVAm/1CNC membrane with the increase in pressure from 5 to 15 bar. However, selectivity dropped from 41 to 39 for formulated membranes.  相似文献   

17.
Ethylene and propylene are produced in larger quantities than any other organic compound. Production of these olefins requires separation of the olefins from the corresponding paraffins. Distillation is currently used but this is an extremely energy-intensive process due to the very low relative volatility of the components. Previous studies have shown that facilitated transport membranes can have high selectivity for olefin/paraffin separation. However, four problems have limited the commercial application of facilitated transport membranes: (i) poor mechanical stability, (ii) the difficulty in preparing thin, high-flux composite membranes, (iii) the requirement of a water-vapor-saturated feed to provide mobility for the olefin-selective carrier, and (iv) poor chemical stability due to carrier poisoning. Solid polymer electrolytes are a novel class of facilitated transport membranes for olefin/paraffin separation. These membranes solve the first three problems listed above. Solid polymer electrolyte membranes are based on rubbery, polyether-based polymers containing a dissolved olefin-complexing metal salt. Solid polymer electrolyte composite membranes made from poly(ethylene oxide) loaded with silver tetrafluoroborate showed an ethylene/ethane selectivity of up to 240 and an ethylene permeance of 8×10−6 cm3(STP)/cm2 s cmHg with a dry feed gas mixture.  相似文献   

18.
Superglassy membranes synthesised by polymers of intrinsic microporosity (PIMs) suffer from physical aging and show poor gas permeance over time, especially thin membranes, due to the fast rearrangement of nonequilibrium polymer chains. Herein, we constructed a novel PIM-1 thin film nanocomposite membrane (TFN) using nanosized UiO-66−NH2 (≈10 nm)/carboxylated PIM-1 (cPIM-1) as the composite filler. Unlike conventional fillers, which interact with the polymer only via the surface, the UiO-66−NH2/cPIM-1 forms a stable three-dimensional (3D) network intertwining with the polymer chains, being very effective to impede chain relaxation, and thus physical aging. Nanosizing of UiO-66−NH2 was achieved by regulating the nucleation kinetics using carbon quantum dots (CQD) during the synthesis. This led to increased surface area, and hence more functional groups to bond with cPIM-1 (via hydrogen bonding between −NH2 and −COOH groups), which also improved interfacial compatibility between the 3D network and polymer chains avoiding defect formation. As a result, the novel TFN showed significantly improved performance in gas separation along with reduced aging (i.e. ≈6 % loss in CO2 permeability over 63 days); the aged membranes had a CO2 permeance of 2504 GPU and ideal selectivity values of 37.2 and 23.8 for CO2/N2 and CO2/CH4, respectively.  相似文献   

19.
Commercial Sartobind® porous cation exchanger membranes, based on stabilized regenerated cellulose and with sulfonic acid (S) or carboxylic acid groups (C), were analysed with respect to their pore structure in dry, slightly swollen and wet state by three microscopic methods, conventional scanning electron microscopy (SEM), environmental SEM (ESEM), and confocal laser scanning microscopy (CLSM). The dehydration behaviour of the membranes was in situ observed at varied vapour pressure in the chamber of the ESEM, indicating some deformations of the macropore structure (largest pore diameters up to 20 μm) and significant changes in dimension and mobility of smaller cellulose fibers within these macropores, both as function of water content of the membrane. The binding of mono-Cy5-labelled lysozyme inside fluoresceine-labelled and unlabelled Sartobind® membranes was monitored by CLSM. The characteristic fluorescence intensity distributions in areas of (146 μm × 146 μm) indicated that protein binding takes place predominately in a layer which is anchored to a fine cellulose fiber network and, to a lower degree, directly to thick cellulose fibers. Due to the limited thickness of this binding layer, a significant fraction of the macropores remained free of protein. Protein binding as function of concentration and incubation times was also monitored by CLSM and discussed related to the binding isotherms for the membrane Sartobind® S and C. Further, a flow-through cell for the in situ monitoring with CLSM of protein binding during the binding step was built, and the results obtained for binding of lysozyme in membranes Sartobind® S indicate this experiment can give very important information on the dynamic behaviour of porous membrane adsorbers during separation: the lateral microscopic resolution in the x, y plane enables the identification of different breakthrough times as function of the location (pore structure), and this information can help to explain possible reasons for axial dispersion (in z-direction) observed in breakthrough analyses of the same separation in a chromatography system. The combination of advanced microscopy with detailed investigations of static and dynamic protein binding will provide a better understanding of the coupling between mass transfer and reversible binding in membrane adsorbers onto separation performance, and it will provide valuable guide-lines for the development of improved membrane adsorbers.  相似文献   

20.
5'-(Tert-butyldimethylsilyl)-2',3'-O-isopropylidene isoguanosine(isoG 1) serves as a selective Cs+ carrier in liquid membrane transport. IsoG~1 is a lipophilic nucleoside that self-assembles via hydrogen bonds and cation-dipole interactions to form a stable decamer sandwich complex with Cs+. Using an acidic receiving phase, Cs+ transport through polymer inclusion membranes (PIMs) was observed at concentrations of isoG 1 below 21 mM. When isoG 1 was precomplexed with Cs+ to give the (isoG 1)10-Cs+decamer, flux was observed above 21 mM carrier. The Cs+ flux increased with increasing carrier concentration of the precomplexed (isoG 1)10-Cs+ decamer. The Cs+ transport selectivity by isoG 1 was investigated in the presence of sodium salt solutions of high concentration. Excellent Cs+ flux and selectivity over the other alkali metal cations was observed in PIMs and bulk liquid membranes (BLMs). In the absence of Cs+, this ionophore exhibitsgood Ba2+ selectivity in BLMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号