首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
Let G be a graph and f:GG be a continuous map. Denote by P(f), R(f) and Ω(f) the sets of periodic points, recurrent points and non-wandering points of f, respectively. In this paper we show that: (1) If L=(x,y) is an open arc contained in an edge of G such that {fm(x),fk(y)}⊂(x,y) for some m,kN, then R(f)∩(x,y)≠∅; (2) Any isolated point of P(f) is also an isolated point of Ω(f); (3) If xΩ(f)−Ω(fn) for some nN, then x is an eventually periodic point. These generalize the corresponding results in W. Huang and X. Ye (2001) [9] and J. Xiong (1983, 1986) [17] and [19] on interval maps or tree maps.  相似文献   

2.
Let ω0(G) denote the number of odd components of a graph G. The deficiency of G is defined as def(G)=maxXV(G)(ω0(G-X)-|X|), and this equals the number of vertices unmatched by any maximum matching of G. A subset XV(G) is called a Tutte set (or barrier set) of G if def(G)=ω0(G-X)-|X|, and an extreme set if def(G-X)=def(G)+|X|. Recently a graph operator, called the D-graph D(G), was defined that has proven very useful in examining Tutte sets and extreme sets of graphs which contain a perfect matching. In this paper we give two natural and related generalizations of the D-graph operator to all simple graphs, both of which have analogues for many of the interesting and useful properties of the original.  相似文献   

3.
Let C be the collection of continuous self-maps of the unit interval I=[0,1] to itself. For fC and xI, let ω(x,f) be the ω-limit set of f generated by x, and following Block and Coppel, we take Q(x,f) to be the intersection of all the asymptotically stable sets of f containing ω(x,f). We show that Q(x,f) tells us quite a bit about the stability of ω(x,f) subject to perturbations of either x or f, or both. For example, a chain recurrent point y is contained in Q(x,f) if and only if there are arbitrarily small perturbations of f to a new function g that give us y as a point of ω(x,g). We also study the structure of the map Q taking (x,f)∈I×C to Q(x,f). We prove that Q is upper semicontinuous and a Baire 1 function, hence continuous on a residual subset of I×C. We also consider the map given by x?Q(x,f), and find that this map is continuous if and only if it is a constant map; that is, only when the set is a singleton.  相似文献   

4.
For a function f:{0,1}nR and an invertible linear transformation LGLn(2), we consider the function Lf:{0,1}nR defined by Lf(x)=f(Lx). We raise two conjectures: First, we conjecture that if f is Boolean and monotone then I(Lf)≥I(f), where I(f) is the total influence of f. Second, we conjecture that if both f and L(f) are monotone, then f=L(f) (up to a permutation of the coordinates). We prove the second conjecture in the case where L is upper triangular.  相似文献   

5.
Let f be a tree map,P(f) the set of periodic points of f and CR(f) the set of chain recurrent points of f. In this paper,the notion of division for invariant closed subsets of a tree map is introduced. It is proved that: (1) fhas zero topological entropy if and only if for any x∈CR(f)-P(f) and each natural number s the orbit of x under f^5 has a division; (2) If f has zero topological entropy,then for any xECR(f)--P(f) the w-limit set of x is an infinite minimal set.  相似文献   

6.
Let G=(V,E) be a simple graph. A subset SV is a dominating set of G, if for any vertex uV-S, there exists a vertex vS such that uvE. The domination number of G, γ(G), equals the minimum cardinality of a dominating set. A Roman dominating function on graph G=(V,E) is a function f:V→{0,1,2} satisfying the condition that every vertex v for which f(v)=0 is adjacent to at least one vertex u for which f(u)=2. The weight of a Roman dominating function is the value f(V)=∑vVf(v). The Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman dominating function on G. In this paper, for any integer k(2?k?γ(G)), we give a characterization of graphs for which γR(G)=γ(G)+k, which settles an open problem in [E.J. Cockayne, P.M. Dreyer Jr, S.M. Hedetniemi et al. On Roman domination in graphs, Discrete Math. 278 (2004) 11-22].  相似文献   

7.
8.
Given a graph G, a function f:V(G)→{1,2,…,k} is a k-ranking of G if f(u)=f(v) implies every u-v path contains a vertex w such that f(w)>f(u). A k-ranking is minimal if the reduction of any label greater than 1 violates the described ranking property. The arank number of a graph, denoted ψr(G), is the largest k such that G has a minimal k-ranking. We present new results involving minimal k-rankings of paths. In particular, we determine ψr(Pn), a problem posed by Laskar and Pillone in 2000.  相似文献   

9.
Let G be a graph and be continuous. Denote by P(f), , ω(f) and Ω(f) the set of periodic points, the closure of the set of periodic points, ω-limit set and non-wandering set of f, respectively. In this paper we show that: (1) vω(f) if and only if vP(f) or there exists an open arc L=(v,w) contained in some edge of G such that every open arc U=(v,c)⊂L contains at least 2 points of some trajectory; (2) vω(f) if and only if every open neighborhood of v contains at least r+1 points of some trajectory, where r is the valence of v; (3) ; (4) if , then x has an infinite orbit.  相似文献   

10.
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,ij if and only if ijE. By M(G) we denote the largest possible nullity of any matrix AS(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G).  相似文献   

11.
For any two graphs F and G, let hom(F,G) denote the number of homomorphisms FG, that is, adjacency preserving maps V(F)→V(G) (graphs may have loops but no multiple edges). We characterize graph parameters f for which there exists a graph F such that f(G)=hom(F,G) for each graph G.The result may be considered as a certain dual of a characterization of graph parameters of the form hom(.,H), given by Freedman, Lovász and Schrijver [M. Freedman, L. Lovász, A. Schrijver, Reflection positivity, rank connectivity, and homomorphisms of graphs, J. Amer. Math. Soc. 20 (2007) 37-51]. The conditions amount to the multiplicativity of f and to the positive semidefiniteness of certain matrices N(f,k).  相似文献   

12.
Given a graph G, a proper labelingf of G is a one-to-one function from V(G) onto {1,2,…,|V(G)|}. For a proper labeling f of G, the profile widthwf(v) of a vertex v is the minimum value of f(v)−f(x), where x belongs to the closed neighborhood of v. The profile of a proper labelingfofG, denoted by Pf(G), is the sum of all the wf(v), where vV(G). The profile ofG is the minimum value of Pf(G), where f runs over all proper labeling of G. In this paper, we show that if the vertices of a graph G can be ordered to satisfy a special neighborhood property, then so can the graph G×Qn. This can be used to determine the profile of Qn and Km×Qn.  相似文献   

13.
We introduce a notion of entropy solution for a scalar conservation law on a bounded domain with nonhomogeneous boundary condition: ut+divΦ(u)=f on Q=(0,TΩ, u(0,⋅)=u0 on Ω and “u=a on some part of the boundary (0,T)×∂Ω.” Existence and uniqueness of the entropy solution is established for any ΦC(R;RN), u0L(Ω), fL(Q), aL((0,T)×∂Ω). In the L1-setting, a corresponding result is proved for the more general notion of renormalised entropy solution.  相似文献   

14.
《Quaestiones Mathematicae》2013,36(6):749-757
Abstract

A set S of vertices is a total dominating set of a graph G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set is the total domination number γt(G). A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u with f (u)=0 is adjacent to at least one vertex v of G for which f (v)=2. The minimum of f (V (G))=∑u ∈ V (G) f (u) over all such functions is called the Roman domination number γR (G). We show that γt(G) ≤ γR (G) with equality if and only if γt(G)=2γ(G), where γ(G) is the domination number of G. Moreover, we characterize the extremal graphs for some graph families.  相似文献   

15.
We investigate second-term asymptotic behavior of boundary blow-up solutions to the problems Δu=b(x)f(u), xΩ, subject to the singular boundary condition u(x)=, in a bounded smooth domain ΩRN. b(x) is a non-negative weight function. The nonlinearly f is regularly varying at infinity with index ρ>1 (that is limuf(ξu)/f(u)=ξρ for every ξ>0) and the mapping f(u)/u is increasing on (0,+). The main results show how the mean curvature of the boundary Ω appears in the asymptotic expansion of the solution u(x). Our analysis relies on suitable upper and lower solutions and the Karamata regular variation theory.  相似文献   

16.
For a given graph G of order n, a k-L(2,1)-labelling is defined as a function f:V(G)→{0,1,2,…k} such that |f(u)-f(v)|?2 when dG(u,v)=1 and |f(u)-f(v)|?1 when dG(u,v)=2. The L(2,1)-labelling number of G, denoted by λ(G), is the smallest number k such that G has a k-L(2,1)-labelling. The hole index ρ(G) of G is the minimum number of integers not used in a λ(G)-L(2,1)-labelling of G. We say G is full-colorable if ρ(G)=0; otherwise, it will be called non-full colorable. In this paper, we consider the graphs with λ(G)=2m and ρ(G)=m, where m is a positive integer. Our main work generalized a result by Fishburn and Roberts [No-hole L(2,1)-colorings, Discrete Appl. Math. 130 (2003) 513-519].  相似文献   

17.
Let G=G(n) be a graph on n vertices with girth at least g and maximum degree bounded by some absolute constant Δ. Assign to each vertex v of G a list L(v) of colors by choosing each list independently and uniformly at random from all 2-subsets of a color set C of size σ(n). In this paper we determine, for each fixed g and growing n, the asymptotic probability of the existence of a proper coloring φ such that φ(v)∈L(v) for all vV(G). In particular, we show that if g is odd and σ(n)=ω(n1/(2g−2)), then the probability that G has a proper coloring from such a random list assignment tends to 1 as n. Furthermore, we show that this is best possible in the sense that for each fixed odd g and each ng, there is a graph H=H(n,g) with bounded maximum degree and girth g, such that if σ(n)=o(n1/(2g−2)), then the probability that H has a proper coloring from such a random list assignment tends to 0 as n. A corresponding result for graphs with bounded maximum degree and even girth is also given. Finally, by contrast, we show that for a complete graph on n vertices, the property of being colorable from random lists of size 2, where the lists are chosen uniformly at random from a color set of size σ(n), exhibits a sharp threshold at σ(n)=2n.  相似文献   

18.
Given a unimodal map f, let I=[c2,c1] denote the core and set E={(x0,x1,…)∈(I,f)|xiω(c,f) for all iN}. It is known that there exist strange adding machines embedded in symmetric tent maps f such that the collection of endpoints of (I,f) is a proper subset of E and such that limk→∞Q(k)≠∞, where Q(k) is the kneading map.We use the partition structure of an adding machine to provide a sufficient condition for x to be an endpoint of (I,f) in the case of an embedded adding machine. We then show there exist strange adding machines embedded in symmetric tent maps for which the collection of endpoints of (I,f) is precisely E. Examples of this behavior are provided where limk→∞Q(k) does and does not equal infinity, and in the case where limk→∞Q(k)=∞, the collection of endpoints of (I,f) is always E.  相似文献   

19.
Taking advantage of perpetuities and the asymptotic behavior of products of random matrices we obtain the direct form of the Fourier transform of an L1-solution of the following random matrix refinement type equation
f(x)=Ω|detL(ω)|C(ω)f(L(ω)x-M(ω))P(dω),  相似文献   

20.
Linda Eroh 《Discrete Mathematics》2008,308(18):4212-4220
Let G be a connected graph and SV(G). Then the Steiner distance of S, denoted by dG(S), is the smallest number of edges in a connected subgraph of G containing S. Such a subgraph is necessarily a tree called a Steiner tree for S. The Steiner interval for a set S of vertices in a graph, denoted by I(S) is the union of all vertices that belong to some Steiner tree for S. If S={u,v}, then I(S) is the interval I[u,v] between u and v. A connected graph G is 3-Steiner distance hereditary (3-SDH) if, for every connected induced subgraph H of order at least 3 and every set S of three vertices of H, dH(S)=dG(S). The eccentricity of a vertex v in a connected graph G is defined as e(v)=max{d(v,x)|xV(G)}. A vertex v in a graph G is a contour vertex if for every vertex u adjacent with v, e(u)?e(v). The closure of a set S of vertices, denoted by I[S], is defined to be the union of intervals between pairs of vertices of S taken over all pairs of vertices in S. A set of vertices of a graph G is a geodetic set if its closure is the vertex set of G. The smallest cardinality of a geodetic set of G is called the geodetic number of G and is denoted by g(G). A set S of vertices of a connected graph G is a Steiner geodetic set for G if I(S)=V(G). The smallest cardinality of a Steiner geodetic set of G is called the Steiner geodetic number of G and is denoted by sg(G). We show that the contour vertices of 3-SDH and HHD-free graphs are geodetic sets. For 3-SDH graphs we also show that g(G)?sg(G). An efficient algorithm for finding Steiner intervals in 3-SDH graphs is developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号