首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Construction of biorthogonal wavelets from pseudo-splines   总被引:4,自引:0,他引:4  
Pseudo-splines constitute a new class of refinable functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. Pseudo-splines were first introduced by Daubechies, Han, Ron and Shen in [Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14(1) (2003), 1–46] and Selenick in [Smooth wavelet tight frames with zero moments, Appl. Comput. Harmon. Anal. 10(2) (2001) 163–181], and their properties were extensively studied by Dong and Shen in [Pseudo-splines, wavelets and framelets, 2004, preprint]. It was further shown by Dong and Shen in [Linear independence of pseudo-splines, Proc. Amer. Math. Soc., to appear] that the shifts of an arbitrarily given pseudo-spline are linearly independent. This implies the existence of biorthogonal dual refinable functions (of pseudo-splines) with an arbitrarily prescribed regularity. However, except for B-splines, there is no explicit construction of biorthogonal dual refinable functions with any given regularity. This paper focuses on an implementable scheme to derive a dual refinable function with a prescribed regularity. This automatically gives a construction of smooth biorthogonal Riesz wavelets with one of them being a pseudo-spline. As an example, an explicit formula of biorthogonal dual refinable functions of the interpolatory refinable function is given.  相似文献   

2.
This paper provides several constructions of compactly supported wavelets generated by interpolatory refinable functions. It was shown in [7] that there is no real compactly supported orthonormal symmetric dyadic refinable function, except the trivial case; and also shown in [10,18] that there is no compactly supported interpolatory orthonormal dyadic refinable function. Hence, for the dyadic dilation case, compactly supported wavelets generated by interpolatory refinable functions have to be biorthogonal wavelets. The key step to construct the biorthogonal wavelets is to construct a compactly supported dual function for a given interpolatory refinable function. We provide two explicit iterative constructions of such dual functions with desired regularity. When the dilation factors are larger than 3, we provide several examples of compactly supported interpolatory orthonormal symmetric refinable functions from a general method. This leads to several examples of orthogonal symmetric (anti‐symmetric) wavelets generated by interpolatory refinable functions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
In areas of geometric modeling and wavelets, one often needs to construct a compactly supported refinable function φ which has sufficient regularity and which is fundamental for interpolation [that means, φ(0)=1 and φ(α)=0 for all α∈ Z s ∖{0}].
Low regularity examples of such functions have been obtained numerically by several authors, and a more general numerical scheme was given in [1]. This article presents several schemes to construct compactly supported fundamental refinable functions, which have higher regularity, directly from a given, continuous, compactly supported, refinable fundamental function φ. Asymptotic regularity analyses of the functions generated by the constructions are given.The constructions provide the basis for multivariate interpolatory subdivision algorithms that generate highly smooth surfaces.
A very important consequence of the constructions is a natural formation of pairs of dual refinable functions, a necessary element in constructing biorthogonal wavelets. Combined with the biorthogonal wavelet construction algorithm for a pair of dual refinable functions given in [2], we are able to obtain symmetrical compactly supported multivariate biorthogonal wavelets which have arbitrarily high regularity. Several examples are computed.  相似文献   

4.
Refinable functions and distributions with integer dilations have been studied extensively since the pioneer work of Daubechies on wavelets. However, very little is known about refinable functions and distributions with non-integer dilations, particularly concerning its regularity. In this paper we study the decay of the Fourier transform of refinable functions and distributions. We prove that uniform decay can be achieved for any dilation. This leads to the existence of refinable functions that can be made arbitrarily smooth for any given dilation factor. We exploit the connection between algebraic properties of dilation factors and the regularity of refinable functions and distributions. Our work can be viewed as a continuation of the work of Erdös [P. Erdös, On the smoothness properties of a family of Bernoulli convolutions, Amer. J. Math. 62 (1940) 180-186], Kahane [J.-P. Kahane, Sur la distribution de certaines séries aléatoires, in: Colloque de Théorie des Nombres, Univ. Bordeaux, Bordeaux, 1969, Mém. Soc. Math. France 25 (1971) 119-122 (in French)] and Solomyak [B. Solomyak, On the random series ∑±λn (an Erdös problem), Ann. of Math. (2) 142 (1995) 611-625] on Bernoulli convolutions. We also construct explicitly a class of refinable functions whose dilation factors are certain algebraic numbers, and whose Fourier transforms have uniform decay. This extends a classical result of Garsia [A.M. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962) 409-432].  相似文献   

5.
In this paper we propose the generalized pseudo-Butterworth refinable functions which involve pseudo-splines of type I and II, Butterworth refinable functions, pseudo-Butterworth refinable functions, and almost all symmetric and causal fractional B-splines. Furthermore, the convergence of cascade algorithms associated with the new masks is proved, and Riesz wavelet bases in L 2(?) corresponding to the parameters are constructed. The regularity of the generalized pseudo-Butterworth refinable functions is also analyzed by Fourier analysis.  相似文献   

6.
The first type of pseudo-splines were introduced in [I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (1) (2003) 1–46; I. Selesnick, Smooth wavelet tight frames with zero moments, Appl. Comput. Harmon. Anal. 10 (2) (2001) 163–181] to construct tight framelets with desired approximation orders via the unitary extension principle of [A. Ron, Z. Shen, Affine systems in L2(Rd): The analysis of the analysis operator, J. Funct. Anal. 148 (2) (1997) 408–447]. In the spirit of the first type of pseudo-splines, we introduce here a new type (the second type) of pseudo-splines to construct symmetric or antisymmetric tight framelets with desired approximation orders. Pseudo-splines provide a rich family of refinable functions. B-splines are one of the special classes of pseudo-splines; orthogonal refinable functions (whose shifts form an orthonormal system given in [I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988) 909–996]) are another class of pseudo-splines; and so are the interpolatory refinable functions (which are the Lagrange interpolatory functions at Z and were first discussed in [S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl. 114 (1986) 185–204]). The other pseudo-splines with various orders fill in the gaps between the B-splines and orthogonal refinable functions for the first type and between B-splines and interpolatory refinable functions for the second type. This gives a wide range of choices of refinable functions that meets various demands for balancing the approximation power, the length of the support, and the regularity in applications. This paper will give a regularity analysis of pseudo-splines of the both types and provide various constructions of wavelets and framelets. It is easy to see that the regularity of the first type of pseudo-splines is between B-spline and orthogonal refinable function of the same order. However, there is no precise regularity estimate for pseudo-splines in general. In this paper, an optimal estimate of the decay of the Fourier transform of the pseudo-splines is given. The regularity of pseudo-splines can then be deduced and hence, the regularity of the corresponding wavelets and framelets. The asymptotical regularity analysis, as the order of the pseudo-splines goes to infinity, is also provided. Furthermore, we show that in all tight frame systems constructed from pseudo-splines by methods provided both in [I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (1) (2003) 1–46] and this paper, there is one tight framelet from the generating set of the tight frame system whose dilations and shifts already form a Riesz basis for L2(R).  相似文献   

7.
Wavelets are generated from refinable functions by using multiresolution analysis. In this paper we investigate the smoothness properties of multivariate refinable functions in Sobolev spaces. We characterize the optimal smoothness of a multivariate refinable function in terms of the spectral radius of the corresponding transition operator restricted to a suitable finite dimensional invariant subspace. Several examples are provided to illustrate the general theory.

  相似文献   


8.
We introduce a general definition of refinable Hermite interpolants and investigate their general properties. We also study a notion of symmetry of these refinable interpolants. Results and ideas from the extensive theory of general refinement equations are applied to obtain results on refinable Hermite interpolants. The theory developed here is constructive and yields an easy-to-use construction method for multivariate refinable Hermite interpolants. Using this method, several new refinable Hermite interpolants with respect to different dilation matrices and symmetry groups are constructed and analyzed.

Some of the Hermite interpolants constructed here are related to well-known spline interpolation schemes developed in the computer-aided geometric design community (e.g., the Powell-Sabin scheme). We make some of these connections precise. A spline connection allows us to determine critical Hölder regularity in a trivial way (as opposed to the case of general refinable functions, whose critical Hölder regularity exponents are often difficult to compute).

While it is often mentioned in published articles that ``refinable functions are important for subdivision surfaces in CAGD applications", it is rather unclear whether an arbitrary refinable function vector can be meaningfully applied to build free-form subdivision surfaces. The bivariate symmetric refinable Hermite interpolants constructed in this article, along with algorithmic developments elsewhere, give an application of vector refinability to subdivision surfaces. We briefly discuss several potential advantages offered by such Hermite subdivision surfaces.

  相似文献   


9.
The stability is an expected property for refinable functions, which is widely considered in the study of refinement equations. Instead of studying the stability of entries of refinable vectors, we study the stability of refinable vectors themselves where they are considered as elements of super Hilbert spaces. We call this kind of stability the vector-stability. We give a necessary and sufficient condition for refinable vectors to be vector-stable. We also give an example to illustrate the difference between two types of stability.  相似文献   

10.
In this paper, we investigate the smoothness of multivariate refinable functions with infinitely supported masks and an isotropic dilation matrix. Using some methods as in [R.Q. Jia, Characterization of smoothness of multivariate refinable functions in Sobolev spaces, Trans. Amer. Math. Soc. 351 (1999) 4089–4112], we characterize the optimal smoothness of multivariate refinable functions with polynomially decaying masks and an isotropic dilation matrix. Our characterizations extend some of the main results of the above mentioned paper with finitely supported masks to the case in which masks are infinitely supported.  相似文献   

11.
In this paper, the Lipschitz continuity of refinable functions related to the general acceptable dilations on the Heisenberg group will be investigated in terms of the uniform joint spectral radius. We also give an investigation of the refinable functions in the generalized Lipschitz spaces related to a kind of special acceptable dilations.  相似文献   

12.
In this paper we construct families of compactly supported nonseparable interpolating refinable functions with arbitrary smoothness (or regularity). The symbols for the newly constructed scaling functions are given by a simple formula related to the Bernstein polynomials. The emphasis of the paper is to show that under an easy-to-verify geometric condition these families satisfy Cohenrs condition, and they have arbitrarily high regularity. Furthermore, the constructed scaling functions satisfy, under the same geometrical condition, the Strang–Fix conditions of arbitrarily high order, which implies that corresponding interpolating schemes have arbitrarily high accuracy.  相似文献   

13.
Pseudo-splines of type I were introduced in [I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (2003) 1–46] and [Selenick, Smooth wavelet tight frames with zero moments, Appl. Comput. Harmon. Anal. 10 (2000) 163–181] and type II were introduced in [B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78–104]. Both types of pseudo-splines provide a rich family of refinable functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. In [B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78–104], Dong and Shen gave a regularity analysis of pseudo-splines of both types. The key to regularity analysis is Proposition 3.2 in [B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78–104], which also appeared in [A. Cohen, J.P. Conze, Régularité des bases d'ondelettes et mesures ergodiques, Rev. Mat. Iberoamericana 8 (1992) 351–365] and [I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1992] for the case l=N−1. In this note, we will give a new insight into this proposition.  相似文献   

14.
Regularity of multiwavelets   总被引:7,自引:0,他引:7  
The motivation for this paper is an interesting observation made by Plonka concerning the factorization of the matrix symbol associated with the refinement equation for B-splines with equally spaced multiple knots at integers and subsequent developments which relate this factorization to regularity of refinable vector fields over the real line. Our intention is to contribute to this train of ideas which is partially driven by the importance of refinable vector fields in the construction of multiwavelets. The use of subdivision methods will allow us to consider the problem almost entirely in the spatial domain and leads to exact characterizations of differentiability and Hölder regularity in arbitrary L p spaces. We first study the close relationship between vector subdivision schemes and a generalized notion of scalar subdivision schemes based on bi-infinite matrices with certain periodicity properties. For the latter type of subdivision scheme we will derive criteria for convergence and Hölder regularity of the limit function, which mainly depend on the spectral radius of a bi-infinite matrix induced by the subdivision operator, and we will show that differentiability of the limit functions can be characterized by factorization properties of the subdivision operator. By switching back to vector subdivision we will transfer these results to refinable vectors fields and obtain characterizations of regularity by factorization and spectral radius properties of the symbol associated to the refinable vector field. Finally, we point out how multiwavelets can be generated from orthonormal refinable bi-infinite vector fields.  相似文献   

15.
In this paper, we exploit the relation between the regularity of refinable functions with non-integer dilations and the distribution of powers of a fixed number modulo 1, and show the nonexistence of a non-trivial C  ∞  solution of the refinement equation with non-integer dilations. Using this, we extend the results on the refinable splines with non-integer dilations and construct a counterexample to some conjecture concerning the refinable splines with non-integer dilations. Finally, we study the box splines satisfying the refinement equation with non-integer dilation and translations. Our study involves techniques from number theory and harmonic analysis.  相似文献   

16.
The paper develops a necessary condition for the regularity of a multivariate refinable function in terms of a factorization property of the associated subdivision mask. The extension to arbitrary isotropic dilation matrices necessitates the introduction of the concepts of restricted and renormalized convergence of a subdivision scheme as well as the notion of subconvergence, i.e., the convergence of only a subsequence of the iterations of the subdivision scheme. Since, in addition, factorization methods pass even from scalar to matrix valued refinable functions, those results have to be formulated in terms of matrix refinable functions or vector subdivision schemes, respectively, in order to be suitable for iterated application. Moreover, it is shown for a particular case that the the condition is not only a necessary but also a sufficient one. Dedicated to Charles A. Micchelli, a unique person, friend, mathematician and collaborator, on the occasion of his sixtieth birthday Mathematics subject classifications (2000) 65T60, 65D99.  相似文献   

17.
Regularity of Multivariate Refinable Functions   总被引:1,自引:0,他引:1  
The regularity of a univariate compactly supported refinable function is known to be related to the spectral properties of an associated transfer operator. In the case of multivariate refinable functions with a general dilation matrix A , although factorization techniques, which are typically used in the univariate setting, are no longer applicable, we derive similar results that also depend on the spectral properties of A . September 30, 1996. Dates revised: December 1, 1996; February 14, 1997; August 1, 1997; November 11, 1997. Date accepted: November 14, 1997.  相似文献   

18.
Stability is an expected property for refinable vectors, which is widely considered in the study of refinement equations. There are two types of stability for refinable vectors. One is the ordinary-stability, another is the vector-stability. The ordinary-stabilityconsiders the stability of entries of refinable vectors, but the vector-stability considers the stability of refinable vectors when they are considered as elements of super-Hilbert spaces. In this article, we give a necessary and sufficient condition for refinable vectors to be vector-stable. Our results improve on some known ones.  相似文献   

19.
This paper is concerned with developing conditions on a given finite collection of compactly supported algebraically linearly independent refinable functions that insure the existence of biorthogonal systems of refinable functions with similar properties. In particular, we address the close connection of this issue with stationary subdivision schemes. Date received: May 20, 1995. Date revised: March 2, 1996.  相似文献   

20.
Refinable functions underlie the theory and constructions of wavelet systems on the one hand and the theory and convergence analysis of uniform subdivision algorithms on the other. The regularity of such functions dictates, in the context of wavelets, the smoothness of the derived wavelet system and, in the subdivision context, the smoothness of the limiting surface of the iterative process. Since the refinable function is, in many circumstances, not known analytically, the analysis of its regularity must be based on the explicitly known mask. We establish in this paper a formula that computes, for isotropic dilation and in any number of variables, the sharp L2-regularity of the refinable function φ in terms of the spectral radius of the restriction of the associated transfer operator to a specific invariant subspace. For a compactly supported refinable function φ, the relevant invariant space is proved to be finite dimensional and is completely characterized in terms of the dependence relations among the shifts of φ together with the polynomials that these shifts reproduce. The previously known formula for this compact support case requires the further assumptions that the mask is finitely supported and that the shifts of φ are stable. Adopting a stability assumption (but without assuming the finiteness of the mask), we derive that known formula from our general one. Moreover, we show that in the absence of stability, the lower bound provided by that previously known formula may be abysmal. Our characterization is further extended to the FSI (i.e., vector) case, to the unisotropic dilation matrix case, and to even snore general setups. We also establish corresponding results for refinable distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号