首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
2.
Incorporation of disulfide bonds to stabilize protein and peptide structures is not always a successful strategy. To advance current knowledge on the contribution of disulfide bonds to beta-hairpin stability, a previously reported beta-hairpin-forming peptide was taken as a template to design a series of Cys-containing peptides. The conformational behavior of these peptides in their oxidized, disulfide-cyclized peptides, and reduced, linear peptides, was investigated on the basis of NMR parameters: NOEs, and 1H and 13C chemical shifts. We found that the effect of disulfide bonds on beta-hairpin stability depends on its location within the beta-hairpin structure, being very small or even destabilizing when connecting two hydrogen-bonded facing residues. When the disulfide bond is linking non-hydrogen-bonded facing residues, we estimated that its contribution to the free-energy change of beta-hairpin folding is approximately -1.0 kcal mol(-1). This value is larger than those reported for most beta-hairpin-stabilizing cross-strand side-chain-side-chain interactions, except for some aromatic-aromatic interactions, in particular the Trp-Trp one, and the cation-pi interaction between Trp and the non-natural methylated Arg/Lys. As disulfide bonds are frequently used to stabilize peptide conformations, our conclusions can be useful for peptide, peptidomimetic, and protein design, and may even extend to other chemical cross-links.  相似文献   

3.
Tandem MS sequencing of peptides that contain a disulfide bond is often hampered when using a slow heating technique. We show that complexation of a transition-metal ion with a disulfide-bridge-containing nonapeptide yields very rich tandem mass spectra, including fragments that involve the cleavage of the disulfide bond up to 56% of the total product ion intensity. On the contrary, MS/MS of the corresponding protonated nonapeptides results predominantly in fragments from the region that is not involved in the disulfide bond. Eleven different combinations of three nonapeptides and three metal ions were measured using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) combined with sustained off-resonance irradiation collision induced dissociation (SORI-CID). All observed fragments are discussed with respect to four different types of product ions: neutral losses, b/y-fragmentation with and without the disulfide bond cleavage, and losses of internal amino acids without rupture of the disulfide bridge. Furthermore, it is shown that the observed complementary fragment pairs obtained from peptide-metal complexes can be used to determine the region of the binding site of the metal ion. This approach offers an efficient way to cleave disulfide-bridged structures using low energy MS/MS, which leads to increased sequence coverage and more confidence in peptide or protein assignments.  相似文献   

4.
A series of small, unsymmetrical pyridine‐2,6‐dicarboxylamide oligoamide foldamers with varying lengths and substituents at the end groups were synthetized to study their conformational properties and folding patterns. The @‐type folding pattern resembled the oxyanion‐hole motifs of enzymes, but several alternative folding patterns could also be characterized. Computational studies revealed several alternative conformers of nearly equal stability. These folding patterns differed from each other in their intramolecular hydrogen‐bonding patterns and aryl–aryl interactions. In the solid state, the foldamers adopted either the globular @‐type fold or the more extended S‐type conformers, which were very similar to those foldamers obtained computationally. In some cases, the same foldamer molecule could even crystallize into two different folding patterns, thus confirming that the different folding patterns are very close in energy in spite of their completely different shapes. Finally, the best match for the observed NOE interactions in the liquid state was a conformation that matched the computationally characterized helix‐type fold.  相似文献   

5.
6.
The gas‐phase free radical initiated peptide sequencing (FRIPS) fragmentation behavior of o‐TEMPO‐Bz‐conjugated peptides with an intra‐ and intermolecular disulfide bond was investigated using MSn tandem mass spectrometry experiments. Investigated peptides included four peptides with an intramolecular cyclic disulfide bond, Bactenecin (RLC RIVVIRVC R), TGF‐α (C HSGYVGVRC ), MCH (DFDMLRC MLGRVFRPC WQY) and Adrenomedullin (16–31) (C RFGTC TVQKLAHQIY), and two peptides with an intermolecular disulfide bond. Collisional activation of the benzyl radical conjugated peptide cation, which was generated through the release of a TEMPO radical from o‐TEMPO‐Bz‐conjugated peptides upon initial collisional activation, produced a large number of peptide backbone fragments in which the S? S or C? S bond was readily cleaved. The observed peptide backbone fragments included a‐, c‐, x‐ or z‐types, which indicates that the radical‐driven peptide fragmentation mechanism plays an important role in TEMPO‐FRIPS mass spectrometry. FRIPS application of the linearly linked disulfide peptides further showed that the S? S or C? S bond was selectively and preferentially cleaved, followed by peptide backbone dissociations. In the FRIPS mass spectra, the loss of ?SH or ?SSH was also abundantly found. On the basis of these findings, FRIPS fragmentation pathways for peptides with a disulfide bond are proposed. For the cleavage of the S? S bond, the abstraction of a hydrogen atom at Cβ by the benzyl radical is proposed to be the initial radical abstraction/transfer reaction. On the other hand, H‐abstraction at Cα is suggested to lead to C? S bond cleavage, which yields [ion ± S] fragments or the loss of ?SH or ?SSH. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Disulfide bonds play a pivotal role in maintaining the natural structures of proteins to ensure their performance of normal biological functions. Moreover, biological molecular assembly, such as the gluten network, is also largely dependent on the intermolecular crosslinking via disulfide bonds. In eukaryotes, the formation and rearrangement of most intra- and intermolecular disulfide bonds in the endoplasmic reticulum (ER) are mediated by protein disulfide isomerases (PDIs), which consist of multiple thioredoxin-like domains. These domains assist correct folding of proteins, as well as effectively prevent the aggregation of misfolded ones. Protein misfolding often leads to the formation of pathological protein aggregations that cause many diseases. On the other hand, glutenin aggregation and subsequent crosslinking are required for the formation of a rheologically dominating gluten network. Herein, the mechanism of PDI-regulated disulfide bond formation is important for understanding not only protein folding and associated diseases, but also the formation of functional biomolecular assembly. This review systematically illustrated the process of human protein disulfide isomerase (hPDI) mediated disulfide bond formation and complemented this with the current mechanism of wheat protein disulfide isomerase (wPDI) catalyzed formation of gluten networks.  相似文献   

8.
A new three‐residue turn in β peptides nucleated by a 12/10‐mixed helix is presented. In this design, β peptides were derived from the 1:1 alternation of C‐linked carbo‐β‐amino acid ester [BocNH‐(R)‐β‐Caa(r)‐OMe] (Boc=tert‐butyloxycarbonyl), which consisted of a D ‐ribo furanoside side chain, and β‐hGly residues. The hexapeptide with (R)‐β‐Caa(r) at the N terminus showed the ‘turn’ stabilized by a 14‐membered NH(4) ??? CO(6) hydrogen bond at the C terminus nucleated by a robust 12/10‐mixed helix, thus providing a ‘helix‐turn’ (HT) motif. The turn and the helix were additionally stabilized by intraresidue electrostatic interaction between the furan oxygen in the carbohydrate side chain and NH in the backbone. However, the hexapeptide with a β‐hGly residue at the N terminus demonstrated the presence of a 10/12 helix through its entire length, which again showed the intraresidue interaction between NH and furan oxygen. The intraresidue NH ??? O? Me electrostatic interactions observed in the monomer, however, were absent in the peptides.  相似文献   

9.
The fluorescence intensity of a C-terminal acceptor chromophore, N-(7-dimethylamino-4-methyl coumarin (DACM), increased proportionally with 280 nm irradiation of an increasing number of donor tryptophan residues located on a β-sheet forming polypeptide. The fluorescence intensity of the acceptor chromophore increased even as the length of the β-sheet edge approached 256 Å, well beyond the Förster radius for the tryptophan–acceptor chromophore pair. The folding of the peptides under investigation was verified by circular dichroism (CD) and deep UV resonance Raman experiments. Control experiments showed that the enhancement of DACM fluorescence occurred concomitantly with peptide folding. In other control experiments, the DACM fluorescence intensity of the solutions of tryptophan and DACM did not show any enhancement of DACM fluorescence with increasing tryptophan concentrations. Formation of fibrillar aggregates of the substrate peptides prepared for the fluorescence studies was undetectable by thioflavin T (ThT) fluorescence.  相似文献   

10.
The ability of a thiol‐containing molecule, thiosalicylic acid (TSA), to function as a reactive matrix for matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry analysis of peptides has been investigated. Although TSA has reducing characteristics, the use of TSA did not cause a reduction‐induced MALDI in‐source decay, probably because of the weak interactions between the thiol group in TSA and the carboxyl oxygen in the peptide. In contrast, when peptides containing disulfide bonds were analyzed by MALDI with TSA as the matrix, the disulfide bond was partially cleaved owing to the reaction with TSA, producing TSA‐adducted peptides. The reaction between the disulfide bond and TSA was suggested to be occurred in solution. The comparison of the MALDI mass spectra obtained using conventional matrix and TSA allows us to count the number of disulfide bonds in the peptides. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
To elucidate the reaction mechanism of the disulfide (SS) bond formation reaction of a polypeptide molecule with a water‐soluble selenoxide reagent, trans‐3,4‐dihydroxyselenolane oxide (DHSox), short‐term oxidation experiments were carried out for the reduced state (R) of a recombinant hirudin CX‐397 variant at pH 7.0 and 25 °C. In the reaction, R was oxidized sequentially to one‐SS, two‐SS, and three‐SS intermediate ensembles within 1 min. The kinetic analysis revealed that the three second‐order rate constants for the SS formation are proportional to the number of thiol groups existing in the reactant SS intermediates, indicating the stochastic nature of the SS formation. Ab initio calculation at the HF/6‐31++G(d,p) level in water by using the polarizable continuum model suggested that the SS formation reaction is highly exothermic and proceeds via a reactive thioselenurane intermediate with a distorted linear O‐Se‐S linkage. The results clearly demonstrated that the rate‐determining step of the SS formation reaction is the first bimolecular process between a thiol substrate and DHSox rather than the subsequent process to release a SS product.  相似文献   

12.
13.
14.
The effects of N-methylation and chain length on a cation-pi interaction have been investigated within the context of a beta-hairpin peptide. Significant enhancement of the interaction and structural stabilization of the hairpin have been observed upon Lys methylation. Thermodynamic analysis indicates an increased entropic driving force for folding upon methylation of Lys residues. Comparison of lysine to analogues ornithine (Orn) and diaminobutyric acid (Dab) indicates that lysine provides the strongest cation-pi interaction and also provides the most stable beta-hairpin due to a combination of side chain-side chain interactions and beta-sheet propensities. These studies have significance for the recognition of methylated lysine in histone proteins.  相似文献   

15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号