首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of the compound cis-[Rh2(DTolF)2(CH3CN)6](BF4)2, a formamidinate derivative of the class of antitumor compounds [Rh2(O2CR)4] (R=Me, Et, Pr), with 9-ethylguanine (9-EtGuaH) or the dinucleotide d(GpG) proceed by substitution of the acetonitrile groups, with the guanine bases spanning the Rh--Rh bond, in a bridging fashion, through sites N7/O6. In the case of 9-EtGuaH, both head-to-head (HH) and head-to-tail (HT) isomers are formed, whereas with the tethered bases in d(GpG), only one right-handed conformer HH1R [Rh2(DTolF)2{d(GpG)}] is present in solution. For both cis-[Rh2(DTolF)2(9-EtGuaH)2](BF4)2 and [Rh2(DTolF)2{d(GpG)}], the absence of N7 protonation at low pH and the substantial decrease of the pKa values for N1-H deprotonation, support N7/O6 binding of the bases to the dirhodium core. The N7/O6 binding of the bases is further corroborated by the downfield shift by Deltadelta approximately 4.0 ppm of the 13C NMR resonances for the C6 nuclei as compared to the corresponding resonances of the free ligands. The HH arrangement of the guanine bases in [Rh2(DTolF)2{d(GpG)}] is indicated by the intense H8/H8 ROE cross-peaks in the 2D ROESY NMR spectrum. Complete characterization of the [Rh2(DTolF)2{d(GpG)}] conformer by 2D NMR spectroscopy supports anti-orientation and N (C3'-endo) conformation for both deoxyribose residues. The N-pucker for the 5'-G base is universal in such cross-links, but it is very unusual for platinum and unprecedented for dirhodium HH cross-linked adducts to have both deoxyribose residues in the N-type conformation. The bulk, the nonlabile character, and the electron-donating ability of the formamidinate bridging groups spanning the dirhodium core affect the nature of the preferred dirhodium DNA adducts. Molecular modeling studies performed on [Rh2(DTolF)2{d(GpG)}] corroborate the structural features obtained by NMR spectroscopy.  相似文献   

2.
Reactions of the anticancer active compound cis-[Rh2(DTolF)2(CH3CN)6](BF4)2 with 9-ethyladenine (9-EtAdeH) or the dinucleotide d(ApA) proceed with bridging adenine bases in the rare imino form (A*), spanning the Rh-Rh bond at equatorial positions via N7/N6. The inflection points for the pH-dependent H2 and H8 NMR resonance curves of cis-[Rh2(DTolF)2(9-EtAdeH)2](BF4)2 correspond to N1H deprotonation of the metal-stabilized rare imino tautomer, which takes place at pKa approximately 7.5 in CD3CN-d3, a considerably reduced value as compared to that of the imino form of 9-EtAdeH. Similarly, coordination of the metal atoms to the N7/N6 adenine sites in Rh2(DTolF)2{d(ApA)} induces formation of the rare imino tautomer of the bases with a concomitant substantial decrease in the basicity of the N1H sites (pKa approximately 7.0 in CD3CN-d3), as compared to the imino form of the free dinucleotide. The presence of the adenine bases in the rare imino form, due to bidentate metalation of the N6/N7 sites, is further corroborated by DQF-COSY H2/N1H and ROE N1H/N6H cross-peaks in the 2D NMR spectra of Rh2(DTolF)2{d(ApA)} in CD3CN-d3 at -38 degrees C. Due to the N7/N6 bridging mode of the adenine bases in Rh2(DTolF)2{d(ApA)}, only the anti orientation of the imino tautomer is possible. The imino form A* of adenine in DNA may result in AT-->CG transversions or AT-->GC transitions, which can eventually lead to lethal mutations. The HH arrangement of the bases in Rh2(DTolF)2{d(ApA)} is indicated by the H8/H8 NOE cross-peaks in the 2D ROESY NMR spectrum, whereas the formamidinate bridging groups dictate the presence of one right-handed conformer HH1R in solution. Complete characterization of Rh2(DTolF)2{d(ApA)} by 2D NMR spectroscopy and molecular modeling supports the presence of the HH1R conformer, anti orientation of both sugar residues about the glycosyl bonds, and N-type conformation for the 5'-A base.  相似文献   

3.
The interactions of [Pt(CNN)(4-dpt)]PF(6), (1; 4-dpt=2,4-diamino-6-(4-pyridyl)-1,3,5-triazine, HCNN=6-phenyl-2,2'-bipyridine) with double-stranded DNA, poly(dA-dT)(2), and poly(dG-dC)(2) were examined by spectroscopic, electrophoretic, and hydrodynamic methods. The spectroscopic data were analyzed with McGhee, van't Hoff, and Gibbs-Helmholtz equations. In a comparative study, [Pt(CNN)(py)]PF(6) (2; py=pyridine) was prepared and the nature of its binding towards DNA was investigated [preliminary results: ChemBioChem 2003, 4, 62-68]. For reactions with calf thymus DNA at 20 degrees C, the intrinsic binding constants for 1 and 2 are (4.6+/-0.2)x10(5) and (2.3+/-0.3)x10(4) mol(-1) dm(3), respectively. Results of DNA-binding reactions revealed that 1 and 2 preferentially bind to the AT sequence of duplex DNA. Intercalation is the preferred binding mode for 2, whereas both intercalation and minor-groove binding are observed for 1. Complex 1 is cytotoxic against a number of carcinoma cell lines, including KB-3-1, CNE-3, and HepG2, and remains potent against multidrug- or cisplatin-resistant KB-V-1 and CNE1 cell lines, for which the resistance ratios are 1.6 and 1.5, respectively. Importantly, 1 is almost an order of magnitude less toxic to the normal cell line CCD-19Lu (IC(50)=176+/-1.7 microM) and it selectively induced apoptosis leading to cancer cell death with less than 5 % detectable necrosis.  相似文献   

4.
Reported herein is a detailed study of the kinetics and mechanism of formation of a 1,4-GG interstrand cross-link by the dinuclear platinum anticancer compound [15N][{cis-PtCl(NH3)2}2{mu-NH2(CH2)6NH2}]2+ (1,1/c,c (1)). The reaction of [15N]1 with 5'-{d(ATATGTACATAT)2} (I) has been studied by [1H,15N] HSQC NMR spectroscopy in the presence of different concentrations of phosphate. In contrast with the geometric trans isomer (1,1/t,t), there was no evidence for an electrostatic preassociation of 1,1/c,c with the polyanionic DNA surface, and the pseudo-first-order rate constant for the aquation of [(15)N]1 was actually slightly higher (rather than lower) than that in the absence of DNA. When phosphate is absent, the overall rate of formation of the cross-link is quite similar for the two geometric isomers, occurring slightly faster for 1,1/t,t. A major difference in the DNA binding pathways is the observation of phosphate-bound intermediates only in the case of 1,1/c,c. 15 mM phosphate causes a dramatic slowing in the overall rate of formation of DNA interstrand cross-links due to both the slow formation and slow closure of the phosphate-bound monofunctional adduct. A comparison of the molecular models of the bifunctional adducts of the two isomers shows that helical distortion is minimal and globally the structures of the 1,4 interstrand cross-links are quite similar. The effect of carrier ligand was investigated by similar studies of the ethylenediamine derivative [15N]1-en. A pKa value of 5.43 was determined for the [15N]1,1/c,c-en diaquated species. The rate of reaction of [15N]1-en with duplex I is similar to that of 1,1/c,c and the overall conformation of the final adduct appears to be similar. The significance of these results to the development of "second-generation" polynuclear platinum clinical candidates based on the 1,1/c,c chelate (dach) series is discussed.  相似文献   

5.
We show that the chelating ligand XY in Ru(II) anticancer complexes of the type [Ru(eta6-arene)(XY)Cl]n+ has a major influence on the rate and extent of aquation, the pKa of the aqua adduct, and the rate and selectivity of binding to nucleobases. Replacement of neutral ethylenediamine (en) by anionic acetylacetonate (acac) as the chelating ligand increases the rate and extent of hydrolysis, the pKa of the aqua complex (from 8.25 to 9.41 for arene=p-cymene), and changes the nucleobase specificity. For the complexes containing the hydrogen-bond donor en, there is exclusive binding to N7 of guanine in competitive nucleobase reactions, and in the absence of guanine, binding to cytosine or thymine but not to adenine. In contrast, when XY is the hydrogen-bond acceptor acac, the overall affinity for adenosine (N7 and N1 binding) is comparable to that for guanosine, but there is little binding to cytidine or thymidine.  相似文献   

6.
We report the breast cancer stem cell (CSC) potency of two nickel(II)-3,4,7,8-tetramethyl-1,10-phenanthroline complexes, 1 and 3 , containing the non-steroidal anti-inflammatory drugs (NSAIDs), naproxen and indomethacin, respectively. The nickel(II) complexes, 1 and 3 kill breast CSCs and bulk breast cancer cells in the micromolar range. Notably, 1 and 3 display comparable or better potency towards breast CSCs than salinomycin, an established CSC-active agent. The complexes, 1 and 3 also display significantly lower toxicity towards non-cancerous epithelial breast cells than breast CSCs or bulk breast cancer cells (up to 4.6-fold). Mechanistic studies suggest that 1 and 3 downregulate cyclooxygenase-2 (COX-2) in breast CSCs and kill breast CSCs in a COX-2 dependent manner. Furthermore, the potency of 1 and 3 towards breast CSCs decreased upon co-treatment with necroptosis inhibitors (necrostatin-1 and dabrafenib), implying that 1 and 3 induce necroptosis, an ordered form of necrosis, in breast CSCs. As apoptosis resistance is a hallmark of CSCs, compounds like 1 and 3 , which potentially provide access to alternative (non-apoptotic) cell death pathways could hold the key to overcoming hard-to-kill CSCs. To the best of our knowledge, 1 and 3 are the first compounds to be associated to COX-2 inhibition and necroptosis induction in CSCs.  相似文献   

7.
By applying caged thymidine residues, DNA duplexes were created in which HgII-mediated base pair formation can be triggered by irradiation with light. When a bidentate ligand was used as the complementary nucleobase, an unprecedented stepwise formation of different metal-mediated base pairs was achieved.  相似文献   

8.
Ruthenium(II) polypyridyl complexes with long‐wavelength absorption and high singlet‐oxygen quantum yield exhibit attractive potential in photodynamic therapy. A new heteroleptic RuII polypyridyl complex, [Ru(bpy)(dpb)(dppn)]2+ (bpy=2,2′‐bipyridine, dpb=2,3‐bis(2‐pyridyl)benzoquinoxaline, dppn=4,5,9,16‐tetraaza‐dibenzo[a,c]naphthacene), is reported, which exhibits a 1MLCT (MLCT: metal‐to‐ligand charge transfer) maximum as long as 548 nm and a singlet‐oxygen quantum yield as high as 0.43. Steady/transient absorption/emission spectra indicate that the lowest‐energy MLCT state localizes on the dpb ligand, whereas the high singlet‐oxygen quantum yield results from the relatively long 3MLCT(Ru→dpb) lifetime, which in turn is the result of the equilibrium between nearly isoenergetic excited states of 3MLCT(Ru→dpb) and 3ππ*(dppn). The dppn ligand also ensures a high binding affinity of the complex towards DNA. Thus, the combination of dpb and dppn gives the complex promising photodynamic activity, fully demonstrating the modularity and versatility of heteroleptic RuII complexes. In contrast, [Ru(bpy)2(dpb)]2+ shows a long‐wavelength 1MLCT maximum (551 nm) but a very low singlet‐oxygen quantum yield (0.22), and [Ru(bpy)2(dppn)]2+ shows a high singlet‐oxygen quantum yield (0.79) but a very short wavelength 1MLCT maximum (442 nm).  相似文献   

9.
A series of cyclometalated gold(III) compounds [Au(m)(C(wedge)N(wedge)C)mL]n+ (m = 1-3; n = 0-3; HC(wedge)N(wedge)CH = 2,6-diphenylpyridine) was prepared by ligand substitution reaction of L with N-donor or phosphine ligands. The [Au(m)(C(wedge)N(wedge)C)mL]n+ compounds are stable in solution in the presence of glutathione. Crystal structures of the gold(III) compounds containing bridging bi- and tridentate phosphino ligands reveal the presence of weak intramolecular pi pi stacking between the [Au(C(wedge)N(wedge)C)]+ units. Results of MTT assays demonstrated that the [Au(m)(C(wedge)N(wedge)C)mL]n+ compounds containing nontoxic N-donor auxiliary ligands (2) exert anticancer potency comparable to that of cisplatin, with IC50 values ranging from 1.5 to 84 microM. The use of [Au(C(wedge)N(wedge)C)(1-methylimidazole)]+ (2 a) as a model compound revealed that the gold(III)-induced cytotoxicity occurs through an apoptotic cell-death pathway. The cell-free interaction of 2 a with double-stranded DNA was also examined. Absorption titration showed that 2 a binds to calf-thymus DNA (ctDNA) with a binding constant of 4.5 x 10(5) dm3 mol(-1) at 298 K. Evidence from gel-mobility-shift assays and viscosity measurements supports an intercalating binding mode for the 2 a-DNA interaction. Cell-cycle analysis revealed that 2 a causes S-phase cell arrest after incubation for 24 and 48 hours. The cytotoxicity of 3 b-g toward cancer cells (IC50 = 0.04-4.3 microM) correlates to that of the metal-free phosphine ligands (IC50 = 0.1-38.0 microM), with [Au2(C(wedge)N(wedge)C)2(mu-dppp)]2+ (3 d) and dppp (dppp = 1,2-bis(diphenylphosphino)propane) being the most cytotoxic gold(III) and metal-free compounds, respectively. Compound 3 d shows a cytotoxicity at least ten-fold higher than the other gold(III) analogues; in vitro cellular-uptake experiments reveal similar absorptions for all the gold(III) compounds into nasopharyngeal carcinoma cells (SUNE1) (1.18-3.81 ng/cell; c.f., 3 d = 2.04 ng/cell), suggesting the presence of non-gold-mediated cytotoxicity. Unlike 2 a, both gold(III) compounds [Au(C(wedge)N(wedge)C)(PPh3)]+ (3 a) (PPh3 = triphenylphosphine) and [Au2(C(wedge)N(wedge)C)2(mu-dppp)]2+ (3 d) interact only weakly with ctDNA and do not arrest the cell cycle.  相似文献   

10.
A range of oxobis(phenyl-1,3-butanedione) vanadium(IV) complexes have been successfully synthesized from cheap starting materials and a simple and solvent-free one-pot dry-melt reaction. This direct, straightforward, fast and alternative approach to inorganic synthesis has the potential for a wide range of applications. Analytical studies confirm their successful synthesis, purity and solid-state coordination, and we report the use of such complexes as potential drug candidates for the treatment of cancer. After a 24 hour incubation of A549 lung carcinoma cells with the compounds, they reveal cytotoxicity values elevenfold greater than cisplatin and remain non-toxic towards normal cell types. Additionally, the complexes are stable over a range of physiological pH values and show the potential for interactions with bovine serum albumin.  相似文献   

11.
12.
13.
Compounds 1-3, composed of two guanidiniocarbonylpyrrole moieties linked by oligoamide bridges and differing in number and type of basic groups, were prepared. The sites and degree of protonation of 1-3 depend strongly on the pH value. The interactions of these compounds with several double-stranded (ds) DNA and dsRNA were investigated by means of UV/Vis and CD spectroscopy as well as isothermal titration microcalorimetry (ITC). These studies revealed that the binding of 1-3 to the polynucleotides is driven by three factors, the presence of aliphatic amino groups, the protonation state of the compounds, and the steric properties of the polynucleotide binding site, that is, the shape and structure of their grooves. The results obtained by all applied methods consistently indicated that receptors 1-3 bind to the minor groove of DNA, but, by contrast, to the major groove of RNA. Additionally, it was shown by atomic force microscopy (AFM) imaging that upon interaction of compound 2 with calf thymus (ct) DNA induced aggregation of the DNA occurs, leading to pronounced changes in its secondary structure.  相似文献   

14.
15.
Three series of metal salophen complexes derived from Zn2+, Cu2+, Pt2+ and Ni2+ have been synthesized and their interaction with quadruplex DNA has been evaluated. The compounds differ on the number of ethyl piperidine substituents. They have been characterized by 1H NMR, IR and UV-visible spectroscopies and by HR-mass spectrometry. Their luminescent properties have been also evaluated and we can observe that, as expected, Zn2+ and Pt2+ complexes are those displaying more interesting luminescence with an emission band red-shifted with respect to the corresponding uncoordinated ligand. DNA interactions with G4 and duplex DNA were evaluated by FRET melting assays (for the Zn2+, Cu2+ and Ni2+ complexes) and by emission titrations (for one Pt2+ complex) which indicated that the disubstituted compounds 2-Ni and 2-Pt are the only ones that display good affinity for G4 DNA structures.  相似文献   

16.
17.
1H NMR data of alpha-[Ru(azpy)2(MeBim)2](PF6)2 (azpy=2-phenylazopyridine, MeBim=1-methylbenzimidazole), 2, revealed the presence of a total of seven atropisomers at -95 degrees C: three head-to-tail, HT, isomers (A, C, and D), and four head-to-head, HH, isomers which, due to the presence of an intrinsic C2 axis in the alpha-[Ru(azpy)2] moiety, are two sets of identical pairs (B/B and E/E). The NMR data of 2 represent a unique example of a coordination compound that shows a variable temperature (VT) behavior with more, well-defined steps of slow-to-fast exchange of its atropisomers. At 65 degrees C, all atropisomers are in fast exchange; on lowering the temperature the sharp signals first broaden (at room temperature) and consecutively split up into two sets of relatively sharp signals, in slow exchange, at about 0 degrees C (D, 40 %, and the coalesced signals of ABBCEE, 60 %). Upon further cooling, the set of peaks belonging to D remain sharp until the lowest recording temperatures. The signals of the other set of resonances, on the other hand, first broaden again and then separate into two sets of broad peaks (C/E/E and A) and one set of sharp peaks (B and B in fast exchange); on lowering the temperature even more, these signals broaden once again and finally, at -95 degrees C, are split up into a total of four sets of signal (A, B/B, C, and E/E). At low temperatures, ROESY experiments revealed that atropisomerization occurs through the synchronous rotation of both MeBim ligands in the interconversion of the two "identical" HH atropisomers B and B, as well as in the interconversion between C and E/E. The HH rotamers B/B furthermore exhibit a slow-to-fast exchange atropisomerization behavior that is observed independently from the other dynamic processes in this compound. The versatile cis bifunctional binding of the DNA model bases (MeBim ligands) in 2 parallels the observation of alpha-[Ru(azpy)2Cl2] which shows extraordinarly high cytotoxicity against tumor cell lines.  相似文献   

18.
The detection and fragmentation behaviour of adducts of the chemotherapeutic cis-diamminedichloroplatinum(II) (cisplatin) with the dinucleosidemonophosphates d(ApG), d(GpG) and d(TpC) as model compounds for DNA adducts in an ion trap with electrospray ionization were studied. Mainly the monofunctional adduct, the bifunctional adduct and the bifunctional adduct with platinum bridging two dinucleosidemonophosphates were detected. In addition, several more complex adducts were seen resulting from reactions among these species. Adduct formation was low in the case of d(TpC). Fragmentation could be controlled strongly by varying the temperature of the transfer capillary; furthermore, tandem mass spectrometric (MS/MS) experiments on both the monofunctional and the bifunctional adducts were performed. For the adducts of d(ApG) and d(GpG) losses of NH(3) and HCl were the most dominant reactions, followed by the losses of one, then another two units of 98 amu from the sugar-phosphate backbone, whereas d(TpC)-Pt predominantly forms the dinucleosidemonophosphate. In the gas phase, the conversion of the monofunctional into the bifunctional adducts through binding to another site in the dinucleotide accompanied by loss of NH(3) or HCl could also be observed. The removal of a ligand from the coordination sphere of the square-planar platinum complexes appeared to be the crucial step for the induction of further fragmentation of the dinucleotide ligand. MS(n) experiments of the bifunctional adducts of d(ApG) and d(GpG) revealed different fragmentation pathways involving the loss of phosphoric acid, metaphosphoric acid, deoxyribose units (intact or dehydrated) and the nucleobases in different orders, leaving characteristic binding site-determining fragments. Fragmentation of these ions was also performed, mainly resulting in fragmentation of the bases. The study confirmed the remarkable stability of the platinum-guanine bond compared with other nucleobases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号