首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A unital U with parameter q is a 2 – (q 3 + 1, q + 1, 1) design. If a point set U in PG(2, q 2) together with its (q + 1)-secants forms a unital, then U is called a Hermitian arc. Through each point p of a Hermitian arc H there is exactly one line L having with H only the point p in common; this line L is called the tangent of H at p. For any prime power q, the absolute points and nonabsolute lines of a unitary polarity of PG(2, q 2) form a unital that is called the classical unital. The points of a classical unital are the points of a Hermitian curve in PG(2, q 2).Let H be a Hermitian arc in the projective plane PG(2, q 2). If tangents of H at collinear points of H are concurrent, then H is a Hermitian curve. This result proves a well known conjecture on Hermitian arcs.  相似文献   

2.
We show that a suitable 2-dimensional linear system of Hermitian curves of PG(2,q 2) defines a model for the Desarguesian plane PG(2,q). Using this model we give the following group-theoretic characterization of the classical unitals. A unital in PG(2,q 2) is classical if and only if it is fixed by a linear collineation group of order 6(q + 1)2 that fixes no point or line in PG(2,q 2).  相似文献   

3.
An infinite family of complete (q 2 + q + 8)/2-caps is constructed in PG(3, q) where q is an odd prime ≡ 2 (mod 3), q ≥ 11. This yields a new lower bound on the second largest size of complete caps. A variant of our construction also produces one of the two previously known complete 20-caps in PG(3, 5). The associated code weight distribution and other combinatorial properties of the new (q 2 + q + 8)/2-caps and the 20-cap in PG(3, 5) are investigated. The updated table of the known sizes of the complete caps in PG(3, q) is given. As a byproduct, we have found that the unique complete 14-arc in PG(2, 17) contains 10 points on a conic. Actually, this shows that an earlier general result dating back to the Seventies fails for q = 17.   相似文献   

4.
Some geometry of Hermitian matrices of order three over GF(q2) is studied. The variety coming from rank 2 matrices is a cubic hypersurface M73of PG(8,q ) whose singular points form a variety H corresponding to all rank 1 Hermitian matrices. BesideM73 turns out to be the secant variety of H. We also define the Hermitian embedding of the point-set of PG(2, q2) whose image is exactly the variety H. It is a cap and it is proved that PGL(3, q2) is a subgroup of all linear automorphisms of H. Further, the Hermitian lifting of a collineation of PG(2, q2) is defined. By looking at the point orbits of such lifting of a Singer cycle of PG(2, q2) new mixed partitions of PG(8,q ) into caps and linear subspaces are given.  相似文献   

5.
The unitals in the Hall plane are studied by deriving PG(2,q 2)and observing the effect on the unitals of PG(2,q 2).The number of Buekenhout and Buekenhout-Metz unitals in the Hall plane is determined. As a corollary we show that the classical unital is not embeddble in the Hall plane as a Buekenhout unital and that the Buekenhout unitals of H(q 2)are not embeddable as Buekenhout unitals in the Desarguesian plane. Finally, we generalize this technique to other translation planes.  相似文献   

6.
We first note that each element of a symplectic spread of PG(2n − 1, 2 r ) either intersects a suitable nonsingular quadric in a subspace of dimension n − 2 or is contained in it, then we prove that this property characterises symplectic spreads of PG(2n − 1, 2 r ). As an application, we show that a translation plane of order q n , q even, with kernel containing GF(q), is defined by a symplectic spread if and only if it contains a maximal arc of the type constructed by Thas (Europ J Combin 1:189–192, 1980).  相似文献   

7.
In this paper, we give characterizations of the classical generalized quadrangles H(3, q 2) and H(4, q 2), embedded in PG(3, q 2) and PG(4, q 2), respectively. The intersection numbers with lines and planes characterize H(3, q 2), and H(4, q 2) is characterized by its intersection numbers with planes and solids. This result is then extended to characterize all Hermitian varieties in dimension at least 4 by their intersection numbers with planes and solids.   相似文献   

8.
In this paper we show that starting from a symplectic semifield spread S{\mathcal{S}} of PG(5, q), q odd, another symplectic semifield spread of PG(5, q) can be obtained, called the symplectic dual of S{\mathcal{S}}, and we prove that the symplectic dual of a Desarguesian spread of PG(5, q) is the symplectic semifield spread arising from a generalized twisted field. Also, we construct a new symplectic semifield spread of PG(5, q) (q = s 2, s odd), we describe the associated commutative semifield and deal with the isotopy issue for this example. Finally, we determine the nuclei of the commutative pre-semifields constructed by Zha et al. (Finite Fields Appl 15(2):125–133, 2009).  相似文献   

9.
In this paper, we study the p-ary linear code C(PG(n,q)), q = p h , p prime, h ≥ 1, generated by the incidence matrix of points and hyperplanes of a Desarguesian projective space PG(n,q), and its dual code. We link the codewords of small weight of this code to blocking sets with respect to lines in PG(n,q) and we exclude all possible codewords arising from small linear blocking sets. We also look at the dual code of C(PG(n,q)) and we prove that finding the minimum weight of the dual code can be reduced to finding the minimum weight of the dual code of points and lines in PG(2,q). We present an improved upper bound on this minimum weight and we show that we can drop the divisibility condition on the weight of the codewords in Sachar’s lower bound (Geom Dedicata 8:407–415, 1979). G. Van de Voorde’s research was supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).  相似文献   

10.
Let Ω and be a subset of Σ = PG(2n−1,q) and a subset of PG(2n,q) respectively, with Σ ⊂ PG(2n,q) and . Denote by K the cone of vertex Ω and base and consider the point set B defined by
in the André, Bruck-Bose representation of PG(2,qn) in PG(2n,q) associated to a regular spread of PG(2n−1,q). We are interested in finding conditions on and Ω in order to force the set B to be a minimal blocking set in PG(2,qn) . Our interest is motivated by the following observation. Assume a Property α of the pair (Ω, ) forces B to turn out a minimal blocking set. Then one can try to find new classes of minimal blocking sets working with the list of all known pairs (Ω, ) with Property α. With this in mind, we deal with the problem in the case Ω is a subspace of PG(2n−1,q) and a blocking set in a subspace of PG(2n,q); both in a mutually suitable position. We achieve, in this way, new classes and new sizes of minimal blocking sets in PG(2,qn), generalizing the main constructions of [14]. For example, for q = 3h, we get large blocking sets of size qn + 2 + 1 (n≥ 5) and of size greater than qn+2 + qn−6 (n≥ 6). As an application, a characterization of Buekenhout-Metz unitals in PG(2,q2k) is also given.  相似文献   

11.
In this paper we classify the lines of PG(3, q) whose points belong to imaginary chords of the twisted cubic of PG(3, q). Relying on this classification result, we obtain a complete classification of semiclassical spreads of the generalized hexagon H(q).  相似文献   

12.
A coding‐theoretic characterization of a unital in the Hughes plane is provided, based on and extending the work of Blokhuis, Brouwer, and Wilbrink in PG(2,q2). It is shown that a Frobenius‐invariant unital is contained in the p‐code of the Hughes plane if and only if that unital is projectively equivalent to the Rosati unital. © 2003 Wiley Periodicals, Inc.  相似文献   

13.
We discuss derivation‐like techniques for transforming one locally Hermitian partial ovoid of the Hermitian surface H(3,q2) into another one. These techniques correspond to replacing a regulus by its opposite in some naturally associated projective 3‐space PG(3,q) over a square root subfield. © 2006 Wiley Periodicals, Inc. J Combin Designs 15: 478–486, 2007  相似文献   

14.
Aspread inPG(n, q) is a set of lines which partitions the point set. A packing inPG(n, q) (n odd) is a partition of the lines into spreads. Two packings ofPG(n, q) are calledorthogonal if and only if any two spreads, one from each packing, have at most one line in common. Recently, R. D. Baker has shown the existence of a pair of orthogonal packings inPG(5, 2). In this paper we enumerate all packings inPG(5, 2) having both an automorphism of order 31 and the Frobenius automorphism. We find all pairs of orthogonal packings of the above type and display a set of six mutually orthogonal packings. Previously the largest set of orthogonal packings known inPG(5, 2) was two.  相似文献   

15.
We prove that every polarity of PG(2k − 1,q), where k≥ 2, gives rise to a design with the same parameters and the same intersection numbers as, but not isomorphic to, PG k (2k,q). In particular, the case k = 2 yields a new family of quasi-symmetric designs. We also show that our construction provides an infinite family of counterexamples to Hamada’s conjecture, for any field of prime order p. Previously, only a handful of counterexamples were known.   相似文献   

16.
In this paper we construct maximal partial spreads in PG(3, q) which are a log q factor larger than the best known lower bound. For n ≥ 5 we also construct maximal partial spreads in PG(n, q) of each size between cnq n ? 2 log q and cq n ? 1.  相似文献   

17.
A Buekenhout-Tits unital is defined to be a unital in PG(2, q2) obtained by coning the Tits ovoid using Buekenhout's parabolic method. The full linear collineation group stabilizing this unital is computed, and related design questions are also addressed. While the answers to the design questions are very similar to those obtained for Buekenhout-Metz unitals, the group theoretic results are quite different  相似文献   

18.
When one considers the hyperovals inPG(2,q),qeven,q>2, then the hyperoval inPG(2, 4) and the Lunelli-Sce hyperoval inPG(2, 16) are the only hyperovals stabilized by a transitive projective group [10]. In both cases, this group is an irreducible group fixing no triangle in the plane of the hyperoval, nor in a cubic extension of that plane. Using Hartley's classification of subgroups ofPGL3(q),qeven [6], allk-arcs inPG(2,q) fixed by a transitive irreducible group, fixing no triangle inPG(2,q) or inPG(2,q3), are determined. This leads to new 18-, 36- and 72-arcs inPG(2,q),q=22h. The projective equivalences among the arcs are investigated and each section ends with a detailed study of the collineation groups of these arcs.  相似文献   

19.
New subgeometry partitions of PG(n − 1, q m ) by subgeometries isomorphic to PG(n − 1, q) are constructed.   相似文献   

20.
Some recent results on k-arcs and hyperovals of PG(2,q),on partial flocks and flocks of quadratic cones of PG(3,q),and on line spreads in PG(3,q) are surveyed. Also,there is an appendix on how to use Veronese varieties as toolsin proving theorems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号