首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tribology of surfaces modified with doubly bound polymer chains (loops) has been investigated in good solvent conditions using Langevin dynamics simulations. The density profiles, brush interpenetration, chain inclination, normal forces, and shear forces for two flat substrates modified by doubly bound bead-necklace polymers and equivalent singly bound polymers (twice as many polymer chains of 12 the molecular weight of the loop chains) were determined and compared as a function of surface separation, grafting density, and shear velocity. The doubly bound polymer layers showed less interpenetration with decreasing separation than the equivalent singly bound layers. Surprisingly, this difference in interpenetration between doubly bound polymer and singly bound polymer did not result in decreased friction at high shear velocity possibly due to the decreased ability of the doubly bound chains to deform in response to the applied shear. However, at lower shear velocity, where deformation of the chains in the flow direction is less pronounced and the difference in interpenetration is greater between the doubly bound and singly bound chains, some reduction in friction was observed.  相似文献   

2.
The measurements of adsorption from solutions of polymers (poly(butyl methacrylate) and polystyrene) and their mixtures at various temperatures in the wide concentration region from dilute to semidilute solution have been made. The adsorption isotherms and fraction of bound segments confirm the existence of the transition concentration region near the critical concentration of the chain overlapping when the change of adsorption mechanisms take place. The effect of temperature on adsorption from the mixtures is different for both the polymers depending on the concentration regime. For PBMA, which adsorbs from the mixtures preferentially, the adsorption isotherms are of the same shape as for adsorption from binary solutions and are characterized by the presence of a small forepart in the transition region and by increasing adsorption with temperature. For less adsorbing PS by transition from dilute to semidilute regime the inversion of the temperature effect on adsorption is observed. These results are confirmed by the estimations of the parameters of preferential adsorption at various temperatures. The data on the fraction of bound segments for dilute regime corresponds to the extended conformation of chains at the surface. The transition to semidilute regime leads to the diminishing of the fraction of bound segments as a result of simultaneous adsorption of macromolecular aggregates. Values of adsorption layer thickness have been calculated for various solution regimes and concentration. The dependence of the adsorption layer thickness on the temperature and on the solution regime at which adsorption occurs was established.  相似文献   

3.
Understanding the effect of inhomogeneity on the charge regulation and dielectric properties, and how it depends on the conformational characteristics of the macromolecules is a long-standing problem. In order to address this problem, we have developed a field-theory to study charge regulation and local dielectric function in planar polyelectrolyte brushes. The theory is used to study a polyacid brush, which is comprised of chains end-grafted at the solid-fluid interface, in equilibrium with a bulk solution containing monovalent salt ions, solvent molecules, and pH controlling acid. In particular, we focus on the effects of the concentration of added salt and pH of the bulk in determining the local charge and dielectric function. Our theoretical investigations reveal that the dipole moment of the ion-pairs formed as a result of counterion adsorption on the chain backbones play a key role in affecting the local dielectric function. For polyelectrolytes made of monomers having dipole moments lower than the solvent molecules, dielectric decrement is predicted inside the brush region. However, the formation of ion-pairs (due to adsorption of counterions coming from the dissociation of added salt) more polar than the solvent molecules is shown to increase the magnitude of the dielectric function with respect to its bulk value. Furthermore, an increase in the bulk salt concentration is shown to increase the local charge inside the brush region.  相似文献   

4.
The changes in the free energy ΔA accompanying penetration of polymer solutions from bulk into slit-like cavities were determined by lattice simulations. In dilute solutions the thermodynamics of penetration is controlled mainly by the parameter ϵw specifying interaction between polymer and walls of repulsive or adsorptive cavities. However, the magnitude of |ΔA| is substantially reduced by increasing concentration ∅︁ in bulk solution. Furthermore, compression of chains by concentration in good solvents and adsorptive cavities was found to be larger in the slit then in the bulk. At intermediate confinement, a region of a minimum coil size was observed at all concentrations and attraction strengths, where molecules are squeezed along all three axes.  相似文献   

5.
Coefficients of translational and rotational self-diffusion of rigid-chain rodlike molecules formed from four spherical particles are determined by the molecular dynamics method. Simulations are performed for a three-dimensional canonical ensemble of 4096 Lennard-Jones particles within the range of chain concentration in its monomer varying from 2 to 100 mol % with allowance for the adsorption of chains on two parallel walls confining the system. Changes in the concentration profiles of chains and solvent particles over the normal to walls during variations in adsorption energy are considered. It is shown that the dependences of translational and rotational self-diffusion coefficients on the concentration and adsorption energy govern the changes in the characteristic times of the orientation-disorientation processes of molecules. All specific features of the establishment of orientational order and its relaxation are determined mainly by the degree of coverage of the adsorption monolayer. The contributions of the second and third monolayers to the weighted-mean mobility of chains begin to be pronounced with an increase in concentration. The exchange of chains between the adsorption monolayer and bulk solution is suppressed with an increase in the adsorption energy, and the monolayer is transformed into a set of two-dimensional “crystallites.” These crystallites form a typical domain structure on the adsorbing surface. The orientation and, hence, the ordering of domains by the external field occur a little more slowly than the orientation of molecules in solution. The disorientation requiring asynchronous rotations of chains is impeded, thus resulting in noticeable retardation of this process relative to the orientation, and upon achievement of a certain value of adsorption energy, the orientation of chains induced in the first adsorption monolayer becomes stable.  相似文献   

6.
Ionic amphiphilic dextran derivatives were synthesized by the attachment of sodium sulfopropyl and phenoxy groups on the native polysaccharide. A family of dextran derivatives was thus obtained with varying hydrophobic content and charge density in the polymer chains. The surface-active properties of polymers were studied at the air-water and dodecane-water interfaces using dynamic surface/interfacial tension measurements. The adsorption was shown to begin in a diffusion-limited regime at low polymer concentrations, that is to say, with the diffusion of macromolecules in the bulk solution. In contrast, at long times the interfacial adsorption is limited by interfacial phenomena: adsorption kinetics or transfer into the adsorbed layer. A semiempirical equation developed by Filippov was shown to correctly fit the experimental curves over the whole time range. The presence of ionic groups in the chains strongly lowers the adsorption kinetics. This effect can be interpreted by electrostatic interactions between the free molecules and the already adsorbed ones. The adsorption kinetics at air-water and oil-water interfaces are compared.  相似文献   

7.
“Grafting through” polymerization represents copolymerization of free monomers in solution and polymerizable units bound to a substrate. Free polymer chains are formed initially in solution and can incorporate the surface-bound monomers, and thereby, get covalently bonded to the surface during the polymerization process. As more growing chains attach to the surface-bound monomers, an immobilized polymer layer is formed on the surface. We use a combination of computer simulation and experiments to comprehend this process for monomers bound to a flat impenetrable substrate. We concentrate specifically on addressing the effect of spatial density of the surface-bound monomers on the formation of the surface-attached polymers. We employ a lattice-based Monte Carlo model utilizing the bond fluctuation model scheme to provide molecular-level insight into the grafting process. For experimental validation, we create gradients of density of bound methacrylate units on flat silicon wafers using organosilane chemistry and carry out “grafting through” free radical polymerization initiated in bulk. We report that the proximity of the surface-bound polymerizable units promotes the “grafting through” process but prevents more free growing chains to “graft through'' the polymerizable units. The “grafting through” process is self-limiting in nature and does not affect the overall density of the surface-bound polymer layer, except in case of the highest theoretical packing density of surface-bound monomers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 263–274  相似文献   

8.
We present Monte Carlo simulations of nonionic surfactant adsorption at the liquid/vapor interface of a monatomic solvent. All molecules in the system, solvent and surfactant, are characterized by the Lennard-Jones (LJ) potential using differing interaction parameters. Surfactant molecules consist of an amphiphilic chain with a solvophilic head and a solvophobic tail. Adjacent atoms along the surfactant chain are connected by finitely extensible harmonic springs. Solvent molecules move via the Metropolis random-walk algorithm, whereas surfactant molecules move according to the continuum configurational bias Monte Carlo (CBMC) method. We generate quantitative thermodynamic adsorption and surface tension isotherms in addition to surfactant radius of gyration, tilt angles, and potentials of mean force. Surface tension simulations compared to those calculated from the simulated adsorbed amounts and the Gibbs adsorption isotherm agree confirming equilibrium in our simulations. We find that the classical Langmuir isotherm is obeyed for our LJ surfactants over the range of head and tail lengths studied. Although simulated surfactant chains in the bulk solution exhibit random orientations, surfactant chains at the interface orient roughly perpendicular and the tails elongate compared to bulk chains even in the submonolayer adsorption regime. At a critical surfactant concentration, designated as the critical aggregation concentration (CAC), we find aggregates in the solution away from the interface. At higher concentrations, simulated surface tensions remain practically constant. Using the simulated potential of mean force in the submonolayer regime and an estimate of the surfactant footprint at the CAC, we predict a priori the Langmuir adsorption constant, KL, and the maximum monolayer adsorption, Gammam. Adsorption is driven not by proclivity of the surfactant for the interface, but by the dislike of the surfactant tails for the solvent, that is by a "solvophobic" effect. Accordingly, we establish that a coarse-grained LJ surfactant system mimics well the expected equilibrium behavior of aqueous nonionic surfactants adsorbing at the air/water interface.  相似文献   

9.
Combining scaling arguments and Monte Carlo simulations using the bond fluctuation method we have studied concentration effects for the adsorption of symmetric AB-random copolymers at selective, symmetric interfaces. For the scaling analysis we consider a hierarchy of two length scales given by the excess (adsorption) blobs and by two dimensional thermal blobs in the semidilute surface regime. When both length scales match, a densely packed array of adsorption blobs is formed (saturation). We show that for random copolymer adsorption the interface concentration can be further increased (oversaturation) due to reorganization of excess blobs. Crossing over this threshold results in a qualitative change in the behavior of the adsorption layer which involves a change in the average shape of the adsorbed chains towards a hairpinlike form. We have analyzed the distribution of loops and tails of adsorbed chains in the various concentration regimes as well as the chain order parameter, concentration profiles, and the exchange rate of individual chains. We emphasized the role of saturation scaling which dominates the behavior of static and dynamic quantities at higher surface concentration.  相似文献   

10.
The exchange kinetics of polymers adsorbing on a solid surface is extensively studied by dynamic Monte Carlo simulations. A model employed simulates a semidilute polymer solution placed in contact with a solid surface that attracts polymer segments by the adsorption interaction (χs). The exchange process of polymer chains, between the solution and the adsorbed polymer layer, is examined under various conditions. The exchange kinetics shows two characteristic regimes with increasing chain length. One is the diffusion‐controlled regime found with a small χs , and the other the detachment‐controlled regime with a large χs . These two regimes are well described by a kinetic theory. Various dynamic quantities show that the diffusion‐controlled regime is not due to sluggish dynamics near the surface, but rather to bulk diffusion of chains. The diffusion‐controlled regime found in this study is considered to appear at the high temperature limit.  相似文献   

11.
12.
The positive ion electrospray mass spectra of the quaternary ammonium salt herbicides paraquat and diquat are examined by on-line separation with capillary electrophoresis (CE) and by direct infusion of the analytes. The analytes are separated by CE in 7–10 min at pH 3.9 in 50% methanol-water by using several different separation buffer electrolytes. The capillary electrophoresis-electrospray ionization (CE-ES) mass spectra of paraquat and diquat consist primarily of doubly charged molecular ions, singly charged molecular ions, and singly charged deprotonated ions. The direct infusion spectra consist primarily of doubly charged molecular ions and singly charged deprotonated ions. The relative abundances of the doubly charged and deprotonated ions depend strongly on the presence or absence of ammonium ion in the CE separation buffer or the direct infusion solution. A deprotonation mechanism is proposed in which the free base ammonia is the deprotonating agent in the desolvating charged droplets or in the gas phase. The analytical potential of the CE-ES electrospray approach for environmental analyses is evaluated in terms of the precision of replicate injections, linear concentration range, and estimated detection limit.  相似文献   

13.
We describe a novel technology based on changes in the resonant frequency of an acoustically actuated surface and use it to measure temporal changes in the surface energy gamma (N m(-1)) of an elastomeric polymer membrane due to the adsorption of macromolecules from aqueous solution. The resonant elastomeric surface-tension (REST) sensor permits simultaneous determination of mass loading kinetics and gamma(t) for a given adsorption process, thereby providing a multivariable data set from which to build and test models of the kinetics of adsorption at solid-liquid interfaces. The technique is used to measure gamma(t) during the adsorption of either sodium dodecyl sulfate (SDS) or hen egg-white lysozyme (HEWL) onto an acrylic polymer membrane. The adsorption of SDS is reversible and is characterized by a decrease in gamma over a time period that coincides with that required for the mass loading of the membrane. For the adsorption of HEWL labeled with Alexa Fluor 532 dye, gamma continues to change long after the surface concentration of labeled HEWL, measured by using the elastomeric polymer membrane as an optical waveguide, reaches steady state. Gradual but significant changes in gamma(t) are observed as long as the concentration of protein in the bulk solution, c(b), remains nonzero. HEWL remains adsorbed to the membrane when c(b) = 0, but changes in gamma(t) are not observed under this condition, indicating that the interaction of bound protein molecules with those free in solution contribute to the prolonged change in the surface energy. This observation has been used to define a new model for the kinetics of globular protein adsorption to a solid-liquid interface that includes a mechanism by which the molecules in the bulk can facilitate the desorption of a sorbate molecule or change the energetic states of adsorbed molecules and, thus, the overall surface energy. The model is shown to capture the unique features of protein adsorption kinetics, including the relatively fast mass loading, the much more gradual change in surface energy that does not cease until the protein is removed from the bulk, the rapid desorption of an incubation-time-dependent fraction of bound protein when the protein is removed from the bulk, and the fixing of the residual surface concentration and surface energy at constant values once the removal of reversibly bound protein and free protein is complete.  相似文献   

14.
The adsorption of complexes of cationic starch, (CS) and a series of homologous sodium alkanoates on silica was studied with the quartz crystal microbalance with dissipation (QCM-D) instrument. The systems were chosen so as to represent CS/surfactant ratios below and above the critical association concentrations of the surfactants but below their critical micelle concentrations. It was found that
– surfactants did not adsorb on cationic polymers that were very tightly bound to the surface;

– surfactants did adsorb on polyelectrolytes forming layers with loops and tails extending into the solution, provided the concentration of surfactant was at least around the critical association concentration (cac) of the surfactant/polymer system;

– adsorption of surfactant was promoted by increasing the surfactant chain length and by adding simple electrolyte that weakened the electrostatic polymer/surface interaction and

– multilayers were formed when the surfactant concentration in solution was well above the cac; their formation was promoted by increasing hydrophobic interactions, e.g. by increasing the surfactant chain length.

Keywords: Adsorption; Cationic starch; Surfactant; Quartz crystal microbalance; Viscoelasticity  相似文献   


15.
Recent experiments suggest that the high hydrogen storage capacity in graphite nanostructures might be associated with adsorption on the edges. First-principles calculations are used to study the structure and energetics of H chemisorption on graphite zigzag edges. The properties of both singly and doubly hydrogenated edges are examined. Molecular hydrogen can dissociatively adsorb on the edge directly, with small activation barriers to the formation of either singly or doubly hydrogenated structures. A new model for the location of adsorbed H is proposed.  相似文献   

16.
The poly(2-vinylpyridine) layer was established at the Pyrex glass/water interface with periodic phases of adsorption/desorption runs observed over several days. This was evidenced by determining the concentration of radio-labelled molecules in the solution equilibrating the glass beads as a function of time (the effluent) while the same radio-labelled polymer was slowly supplied by injecting the polymer solution into the reactor containing the adsorbent at a controlled extremely slow rate. Although the adsorption (or the desorption) steps seemed to present some periodic character, they were better correlated with the successive bulk concentration thresholds that were established with time when the initial surface was free of polymer at time zero. Even when the adsorbent was coated at different degrees, desorption steps were correlated to the overstepping of decreasing concentration thresholds. Adsorption and desorption runs were attributed to the existence of different typical interfacial conformations of the adsorbed macromolecules that only can be stabilised in the adsorbed state when the layer was equilibrated with the polymer solution of a certain concentration. Macromolecule were definitely adsorbed when the reconformation process led to a flat conformation (trains). Macromolecules adsorbed with a conformation close to their solution conformation may be desorbed as a result of the reconformation process affecting previously adsorbed neighbour molecules (in the case of partially coated surfaces at time zero of injection). Macromolecules with loops and tails were retained on the surface when the polymer concentration in the bulk was progressively increased (for uncoated surfaces at time zero of injection). All these effect were attributed to the combined influence of topological effects on adsorption and reconformation of adsorbed macromolecules that characterise the non-equilibrium adsorption processes.  相似文献   

17.
A very simple theory of swelling and collapse of weakly charged polyelectrolyte networks in the solution of an oppositely charged surfactant has been developed. The following contributions to the free energy were taken into account: free energy of volume interaction and of elastic deformation of the network chains, free energy connected with micelle formation and free energy of translational motion of all mobile ions in the system (translational entropy). Both the cases of a solution of charged surfactant and that of a mixed solution of charged and neutral surfactant components have been taken into account. It has been shown that the behaviour of the network depends on the total surfactant concentration in the system and corresponds to one of the three following regimes: At low concentration, micelles inside the network are not formed and the behaviour of the polymer network is similar to that of a network swelling in the solution of a lowmolecular-weight salt (regime 1). In the second regime, surfactant concentration inside the network exceeds the critical micelle concentration and micelles are formed; in this regime the network collapses because surfactant molecules, aggregated in micelles, cease to create “exerting” osmotic pressure in the network sample. In the third regime, at very high surfactant concentration, formation of additional micelles inside the network ceases, and the network dimensions coincide with those of the corresponding neutral network.  相似文献   

18.
The thickness of nanolayers formed by adsorption from dilute and semi-dilute solutions on a solid SiO2 surface has been estimated from adsorption isotherms and atomic force microscopy (AFM) measurements for polystyrene, poly(butyl methacrylate), and their mixtures. The thickness of the adsorption layers depends strongly on the adsorption conditions and is controlled by several features of the adsorbing entities. In a low-concentration regime of adsorption, the length of polymer chains and the nature of their interaction with the substrate are the most important factors controlling the adsorption process. Above the critical concentration C*, macromolecular clusters (aggregates of several overlapping chains) are formed in a solution as a result of polymer chains self-assembly. Therefore, the final adsorption layer thickness is determined mainly by the size of the clusters in this concentrated regime of adsorption. We also demonstrate that in the case of polymer mixtures, the adsorption leads to formation of mosaic structures with alternation of the polymeric components in plane of the substrate and a characteristic domain size of approximately 200 nm for each of the components. AFM study reveals that the adsorbed layers are fractal structures whose fractal dimensions depend on the type of the polymer and the adsorption process. We demonstrate therefore that the structure of nanolayers of polymers and their mixtures on the solid surface can be regulated by variation of the adsorption conditions.  相似文献   

19.
Adsorption of a monodisperse polymer at a solid-liquid interface is comprehensively studied by Monte Carlo simulation. The distributions of total segment density and different adsorption configurations including trains, loops and tails are obtained. Effects of reduced exchange interaction energies $ \tilde \varepsilon $, bulk concentrations ϕ*, reduced adsorption energies $ \tilde \varepsilon_a $ and chain lengths r on those distributions are studied. Comparisons with predictions of the Scheutjens-Fleer (SF) theory are also provided. Generally, the chain molecules are more easily adsorbed at an interface in non-solvents than in good solvents. Longer chains are more likely to be adsorbed than shorter ones. The reduced adsorption energy and the bulk concentration have shown strong effects on the segment-density distributions. In addition, the thickness of the adsorption layer is mainly determined by the extension of tails into the bulk solution, which are in turn determined by the chain length. The trains, loops and tails are overwhelmingly short. On the other hand, the amounts of trains and loops are usually much greater than that of tails. Though not perfect, satisfactory agreement is found in comparison with the theoretical predictions of the SF theory.  相似文献   

20.
Adsorption of fibrinogen, modeled as a linear chain of touching beads of various sizes, was theoretically studied using the random sequential adsorption (RSA) model. The adsorption process was assumed to consist of two steps: (i) formation of an irreversibly bound fibrinogen monolayer under the side-on orientation, which is independent of the bulk protein concentration and (ii) formation of the reversibly bound, end-on monolayer, whose coverage was dependent on the bulk concentration. Calculation based on the RSA model showed that the maximum surface concentration of the end-on (reversible) monolayer equals N(⊥∞) = 6.13 × 10(3) μm(-2) which is much larger than the previously found value for the side-on (irreversible) monolayer, equal to N(∞) = 2.27 × 10(3) μm(-2). Hence, the maximum surface concentration of fibrinogen in both orientations is determined to be 8.40 × 10(3) μm(-2) corresponding to the protein coverage of 5.70 mg m(-2) assuming 20% hydration. Additionally, the surface blocking function (ASF) was determined for the end-on fibrinogen adsorption, approximated for the entire range of coverage by the interpolating polynomial. For the coverage approaching the jamming limit, the surface blocking function (ASF) was shown to vanish proportionally to (θ(⊥∞) - θ(⊥))(2). These calculation allowed one to theoretically predict adsorption isotherms for the end-on regime of fibrinogen and adsorption kinetics under various transport conditions (diffusion and convection). Using these theoretical results, a quantitative interpretation of experimental data obtained by TIRF and ellipsometry was successfully performed. The equilibrium adsorption constant for the end-on adsorption regime was found to be 8.04 × 10(-3) m. On the basis of this value, the depth of the adsorption energy minimum, equal to -17.4 kT, was predicted, which corresponds to ΔG = -41.8 kJ mol(-1). This is in accordance with adsorption energy derived as the sum of the van der Waals and electrostatic interactions. Besides having significance for predicting fibrinogen adsorption, theoretical results derived in this work also have implications for basic science providing information on mechanisms of anisotropic protein molecule adsorption on heterogeneous surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号