首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc oxide films were prepared by rf magnetron sputtering on glass substrates with designed ZnO target using high-purity of zinc oxide (99.99%) powder. Systematic study on dependence of target-to-substrate distance (Dts) on structural, electrical and optical properties of the as-grown ZnO films was mainly investigated in this work. XRD showed that highly preferred ZnO crystal in the [0 0 1] direction was grown in parallel to the substrate, while the Dts did not effect to the peak position of XRD. With decreasing Dts, the growth rate is increased while the electrical resistivity as well as crystal size in the ZnO films was decreased. The XPS data showed that the O/Zn ratio in ZnO films was increased with increasing Dts in the films. The as-grown ZnO films have an average transmittance of above 85% at the visible region. The optical band gap of the as-grown ZnO films was changed from 3.18 to 3.36 eV with Dts. With decreasing Dts, the electrical resistivity was decreased, while the growth rate was increased.A bilayer is used as an anode electrode for organic electroluminescent devices. The bilayer consists of an ultrathin ZnO layer adjacent to a hole-transporting layer and an Indium tin oxide (ITO) outerlayer. We tried to bring low the barrier between the devices as deposited ZnO films on ITO substrates. We fabricated the organic EL structure consisted of Al as a cathode, Al2O3 as an electro transport layer, Alq3 as a luminously layer, TPD as a hole transport layer and ZnO (1 nm)/ITO (150 nm) as an anode. The result of this experiment was not good compared with the case of using ITO, nevertheless, at this structure we obtained the lowest turn-on voltage as the value of 19 V and the good brightness (6200 cd/m2) of the emission light from the devices. Then the quantum efficiency was to be 1.0%.  相似文献   

2.
用化学溶液法以醋酸锌和六亚甲基四胺为原料在玻璃衬底上生长出不同形貌的亚微米和微米ZnO棒。探讨了反应液的酸碱度和反应液浓度对生成的ZnO棒形貌的影响,并分析了其生长机制。通过控制一定的酸碱度和溶液浓度,可以得到规则的六角ZnO棒状阵列。这种规则的六角棒沿着[002]方向生长。测量了样品的XRD,扫描电镜像(SEM),并对其发光性能进行了测量分析。其中规则六角ZnO棒的光致发光光谱中有一很强的峰值650nm红色宽谱带和一峰值约387nm的激子发光峰。激子发光峰加宽,实际上是自由激子的发光峰(380nm)和Zni的发光峰(430nm)的叠加。而红色发光峰可能是Vo2+中的电子和价带中的空穴辐射复合所致。  相似文献   

3.
《Composite Interfaces》2013,20(7):627-632
Porous tin oxide was prepared on silicon(111) substrate by the sol–gel route. Then, the samples were dried in air at 600°C for 30 min in an electric furnace. Scanning electron microscope (SEM) images indicated the high density of the pores. Circular microvoids formed by the rigid shaped microarray network of 200–300 nm sizes are clearly seen in the plan view SEM image. The high homogeneity and uniformity of the porous region could also be visualized by this easy method. Nanocrystalline zinc oxide (ZnO) thin films have been deposited onto porous SnO2substrates at high growth rates by radio frequency (RF) sputtering using a ZnO target. The surface morphology of the nanocrystalline ZnO films was characterized by scanning electron microscope (SEM). Photoluminescence (PL) spectroscopy is a powerful, contactless and excellent nondestructive optical tool to study the acceptor binding energy of ZnO nanostructures. The PL measurements were also operated at room temperature. The peak luminescence energy in nanocrystalline ZnO on porous SnO2 is blue-shifted with regard to that in bulk ZnO (381 nm). PL spectra peaks are distinctly apparent at 375 nm for ZnO film grown on porous SnO2/Si(111) substrates.  相似文献   

4.
Flake-like ZnO/surfactant ordered layered nanocomposite has been synthesized by self-assembly at room temperature with the presence of cetyltrimethylammonium bromide (CTAB, CH3(CH2)15N+(CH3)3Br) surfactant. The procedure described in this study is attractive since it gives high yields of ordered layered nanocomposite with flake-like architecture. XRD results showed the formation of a layered structure with two layered spacings ca. 18.56 Å. SEM and FT-IR spectroscopy were used to further characterize ZnO/CTAB nanolayered composite. The ZnO/CTAB-ordered layered nanocomposite exhibits the room temperature photoluminescence (RTPL) characteristics. It is inferred that the RTPL of ZnO/CTAB-layered nanocomposite might be induced by the interfacial effect between the ZnO and the surfactant.  相似文献   

5.
Undoped and aluminum-doped zinc oxide (ZnO) thin films have been grown on polycrystalline α-alumina substrates by ultrasonic spray pyrolysis (USP) technique using zinc acetate dihydrate and aluminum chloride hexahydrate (Al source) dissolved in methanol, ethanol and deionized water. A number of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and photoluminescence (PL) were used to characterize the obtained ZnO thin films. It was seen that the orientation changed with increase in substrate temperature. During the ZnO deposition Zn source reacted with polycrystalline α-Al2O3 substrate to form an intermediate ZnAl2O4 spinel layer. It has been interestingly found that the intensity of green emission at 2.48 eV remarkably increased when the obtained ZnO:Al films were deposited at 380 °C. The FTIR absorbance intensity of spectroscopic band at 447±6 cm−1 is very sensitive to oxygen sublattice disorder resulting from non-stoichiometry, which is consistent with the result of PL characterization.  相似文献   

6.
Cobalt nanoparticles coated with zinc oxide can form composite spheres with core-shell structure. This coating process was based on the use of silane coupling with agent 3-mercaptopropyltrimethoxysilane (HS-(CH2)3Si(OCH3)3, MPTS) as a primer to render the cobalt surface vitreophilic, thus it renders cobalt surface compatible with ZnO. X-ray photoelectron spectroscopy (XPS) was used to gain insight into the way in which the MPTS is bound to the surface of the cobalt nanoparticles. The morphological structure, chemical composition, optical properties and magnetic properties of the product were investigated by using transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), photoluminescence (PL) spectroscope and vibrating sample magnetometer (VSM). It was found that the Co/ZnO core-shell structure nanocomposites exhibited both of favorable magnetism and photoluminescence properties. Results of the thermogravimetric analysis (TGA) and differential thermal analysis (DTA) indicated that the thermal stability of cobalt/zinc oxide was better than that of pure cobalt nanoparticles.  相似文献   

7.
Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO3)2, TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 μA cm−2, a fill factor of 0.26, and a power conversion efficiency of 0.14%.  相似文献   

8.
Chemically sprayed fluorine-indium-doped zinc oxide thin films (ZnO:F:In) were deposited on glass substrates. A mixture of zinc pentanedionate, indium sulfate, and fluoride acid was used in the starting solution. The influence of both the dopant concentration in the starting solution and the substrate temperature on the transport, morphological, linear, and nonlinear optical (NLO) properties were fully characterized with atomic force microscopy (AFM), scanning-electron microscopy (SEM), UV-VIS, and photoluminescence (PL) spectroscopies, and the second-harmonic generation (SHG) technique, respectively. A decrease in the resistivity was observed for increasing substrate temperatures, reaching a minimum value of 1.2 × 10?2 Ω cm for samples deposited at 500°C. The surface morphology was also dependent on the dopant concentration in the starting solution and on the substrate temperature. The X-ray diffraction (XRD) patterns revealed that the ZnO:F:In thin solid films are polycrystalline in nature fitting with a hexagonal wurtize type and showing (002) preferential growth for all of the studied samples. The optical transmittance of these films was found to be higher than 80%, from which the optical band gap of these samples was determined. Finally, a clear dependence on the quadratic NLO properties of the developed semiconducting ZnO:F:In thin films with the substrate temperatures was established, where huge x (2)-NLO coefficients on the order of x 33 (2) = 37 pm V?1 were measured for high substrate temperatures.  相似文献   

9.
Highly transparent conductive Dy2O3 doped zinc oxide (ZnO)1-x(Dy2O3)x nanocrystalline thin films with x from 0.5% to 5% have been deposited on glass substrate by pulsed laser deposition technique. The structural, electrical and optical properties of Dy2O3 doped thin films were investigated as a function of the x value. The experimental results show that the Dy concentration in Dy-doped ZnO thin films has a strong influence on the material properties especially electrical properties. The resistivity decreased to a minimum value of 5.02 × 10−4 Ω cm with x increasing from 0.5% to 1.0%, then significantly increased with the further increasing of x value. On the contrary, the optical direct band gap of the (ZnO)1-x(Dy2O3)x films first increased, then decreased with x increasing. The average transmission of Dy2O3 doped zinc oxide films in the visible range is above 90%.  相似文献   

10.
Abstract

We report here the preliminary results of the surface enhanced transmission infrared spectra of CH3(CH2)7Azo(CH2)3COOH monolayers on CaF2 substrate which was coated by silver island films with different size and distribution. The larger enhancement of absorbance of v(C=O) in COOH residing between silver island gap and small enhancement of absorbance of vibration mode of COO? located on the silver islands are observed. It give us a direct experimental evidence of the collective electron resonance mechanism of surface enhance infrared spectroscopy (SEIRS), i.e. the decrease of the electromagnetic (EM) coupling reduces the enhancement factor of SEIRS.  相似文献   

11.
In the present work we have studied the properties of zinc oxide (ZnO) thin films grown by laser ablation of ZnO targets under different substrate temperature and background oxygen conditions. The ZnO layers were deposited with a Pulsed Laser Deposition (PLD) system on pre-nitrided (0001) sapphire (Al2O3), using the base line of a Nd:YAG laser at 1064 nm. The films were characterized by different structural and optical methods, including X-ray diffraction (XRD), scanning electron microscopy (SEM), optical transmission spectroscopy, and steady-state photoluminescence (PL). XRD analysis with rocking curves and θ–2θ scans indicates preferential growth along the c-axis direction with a full width at half maximum (FWHM) smaller than 1.5. Low-temperature photoluminescence (PL) showed strong excitonic emission near 3.36 eV between 9 and 65 K.  相似文献   

12.
The 57Fe Mössbauer technique has been used to investigate the effect of zinc oxide substitution in (25???x)MnO–xZnO–15Fe2O3–60B2O3 glass system (x?=?0, 5, 10, 15 and 20 mol% of ZnO ). Mössbauer absorption spectra for all the samples recorded at room temperature suggest the existence of the two paramagnetic quadrupole doublets. The observed variations in hyperfine parameters have been explained on the basis of cations distribution and exchange interaction at the lattice sites and it is concluded that B–B interaction increases while the metal–metal interaction decreases due to replacement of manganese oxide by zinc oxide. These results suggest that the present glass system exhibits a paramagnetic behaviour that changes towards the weak paramagnetic when manganese oxide was replaced with zinc oxide.  相似文献   

13.
The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO2-50CaO-15P2O5-(10 − x)Fe2O3-xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 °C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca3Si2O7) phase is also observed when glass is heat treated at 1000 °C. The microstructure of the glass-ceramics heat treated at 800 °C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 °C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.  相似文献   

14.
6 H5CH3, C6H6, and C6H5CH(CH3)2) to pulsed visible laser radiation of a copper vapor laser (λ=510.6 nm). The X-ray Auger electron spectroscopy (XAES), reflection high energy electron diffraction (RHEED), and Raman analysis are employed to characterize the deposited films. The sp3 fraction in deposited films amounts to 60–70% and depends on the precursor. The average film thickness on a glass substrate is about 100 nm. The films show excellent adherence, are transparent in the visible and have microhardness of 50–70 GPa, as measured by nanoindentor. Received: 28 September 1998 / Accepted: 13 January 1999  相似文献   

15.
Magnetic oxide semiconductors, for example the highly transparent and intrinsically n-type conducting zinc oxide doped with the 3d transition metal Co (ZnO:Co), are promising for the emerging field of spintronics [1]. We investigated n-conducting ZnO:Co thin films with a Co content of nominal 0.02, 0.20, or 2.00 at. %. The substitution of Co cations in the tetrahedral sites of wurtzite ZnO with Zn was confirmed at low temperature by the 1.877 eV photoluminescence between crystal field split d-levels of Co2+ (d7) ions. Based on theoretical studies, it is predicted that the formation of electron levels with zinc interstitials (IZn) or hole levels with zinc vacancies (VZn) is necessary to induce ferromagnetism, whereas the formation of electron levels with oxygen vacancies (VO) is detrimental for ferromagnetism in ZnO:Co [2]. Cobalt generates a hole level in ZnO [3]. We investigated the generation of electron levels in n-conducting ZnO:Co in dependence on the Co content by means of deep level transient spectroscopy (DLTS). However, because of the ambiguous categorization of deep defects in n-conducting ZnO (VO, IZn), an optimization of defect-related ferromagnetism in ZnO:Co is not possible at the moment. PACS 78.30.Fs; 91.60.Ed; 91.60.Mk  相似文献   

16.
Thin films of zinc oxide (ZnO) are deposited by a simple method of successive immersion of substrate in (NH4)2ZnO2(0.1 M) chemical solution and in boiling water. Films of a thickness ≈ 500 nm could be deposited on stainless steel and glass by 40 immersions. The composition, structure, optical bandgap and the charge transport mechanism were determined and the results are presented. Films are stoichiometric and have the same hexagonal lattice parameters as for powder samples. Films are formed from grains with a mean size of a few 100 nm. Grains consist of crystallites of mean size 20–30 nm. For films deposited on stainless steel, the crystallites are highly oriented along their c-axis perpendicular to the substrate. Films have a high optical transparency (above 80%) in the visible region and bandgap energy in the range 3.38–3.42 eV. Films are intrinsically n-type and the charge transport across the films is controlled by a shallow trapping level in accordance with the Poole–Frenkel mechanism. The doubly-ionized trapping level has a concentration of 4×1011 cm-3 and zero-field ionization energy of 110 meV. Adsorption of oxygen by annealing the films in air yields a singly-ionized trap. PACS 81.15.Lm; 81.05.Dz; 68.37.Hk; 73.61.Ga  相似文献   

17.
Second-order optical nonlinearities of zinc oxide (ZnO) nanorods grown on quartz substrate were determined by optical second harmonic generation (SHG) measurements at 1064 nm fundamental wavelength. The average length of the zinc oxide nanorods ranged from 50 nm to 700 nm. By employing the Maker fringes technique, we obtained the second-order nonlinear optical coefficients d333 and d311. Their magnitudes and ratio are compared with that of zinc oxide thin film fabricated by different techniques. We see variations of the second-order nonlinear optical coefficients with respect to the aspect ratio of the nanorods. This is attributed to local field effects. PACS 42.65.Ky; 78.67.-n; 81.07.-b  相似文献   

18.
Undoped and Erbium (Er) doped zinc oxide (EZO) thin films were deposited on glass substrate by sol–gel method using spin coating technique with different doping concentration. EZO films were characterized using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), UV–VIS-NIR transmission and single beam z scan method under illumination of frequency doubled Nd:YAG laser. The deposited films were found to be well crystallized with hexagonal wurtzite structure having a preferential growth orientation along the ZnO (002) plane. A blue-shift was observed in the band gap of EZO films with increasing Er concentration. All the films exhibited a negative value of nonlinear refractive index (n2) at 532 nm which is attributed to the two photon absorption and weak free carrier absorption. Third order nonlinear optical susceptibility, χ(3) values of EZO films were observed in the remarkable range of 10? 6 esu. EZO (0.4 at.%) sample was found to be the best optical limiter with limiting threshold of 1.95 KJ/cm2.  相似文献   

19.
Doped zinc oxide thin films are grown on glass substrate at room temperature under oxygen atmosphere, using pulsed laser deposition (PLD). O2 pressure below 1 Pa leads to conductive films. A careful characterization of the film stoichiometry and microstructure using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) concludes on a decrease in crystallinity with Al and Ga additions (≤3%). The progressive loss of the (0 0 2) orientation is associated with a variation of the c parameter value as a function of the film thickness and substrate nature. ZnO:Al and ZnO:Ga thin films show a high optical transmittance (>80%) with an increase in band gap from 3.27 eV (pure ZnO) to 3.88 eV and 3.61 eV for Al and Ga doping, respectively. Optical carrier concentration, optical mobility and optical resistivity are deduced from simulation of the optical data.  相似文献   

20.
Ag掺杂p型ZnO薄膜及其光电性能研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用超声喷雾热分解法在石英衬底上以醋酸锌水溶液为前驱体,以硝酸银水溶液为Ag掺杂源生长了Ag掺杂ZnO(ZnO:Ag)薄膜.研究了衬底温度对所得ZnO:Ag薄膜的晶体结构、电学和光学性质的影响规律.所得ZnO:Ag薄膜结构良好,在室温光致发光谱中检测到很强的近带边紫外发光峰,透射光谱中观测到非常陡峭的紫外吸收截止边和较高的可见光区透过率,表明薄膜具有较高的晶体质量与较好的光学特性.霍尔效应测试表明,在500℃下获得了p型导电的ZnO:Ag薄膜,载流子浓度为5.30×1015cm关键词: ZnO:Ag薄膜 p型掺杂 超声喷雾热分解 霍尔效应  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号