首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
将芳香醇选择性地氧化为相应的羰基化合物(醛或酮)一直是化学研究人员面临的挑战之一。有机电合成技术中的间接电氧化法是进行芳香醇电氧化反应的常用方法,其中通过调控有机媒质结构是提高醇氧化选择性的一种有效途径。本文综述了几类含不同框架的有机媒质及其在醇的电化学氧化转化中的应用,介绍了这几类有机媒质的结构及其在间接电氧化反应中的作用机制,并进一步阐述了如何提高有机媒质的稳定性、溶解性和催化活性,实现醇的可控氧化转化。  相似文献   

2.
有机小分子的电催化氧化是催化领域的一个重要研究内容.通过醇的选择性氧化合成相应醛或酮类化合物在精细化学品和有机化学中间体的合成领域均具有十分重要的意义.有机电催化合成用电子代替强氧化还原剂,可以使反应在比较温和的条件下进行.但在直接电氧化合成反应中,电极表面容易生成有机聚合物膜,使电极钝化,电流效率急剧下降.而在电子转移媒质作用下的有机电催化反应不仅可以避免电极表面钝化,还可以控制目标产物的过度氧化.三芳胺类化合物是一类新型的电氧化还原媒质,由于其具有较宽的电化学氧化还原电位已引起研究者的广泛关注.咔唑类化合物相比于三芳胺类具有更好的平面性,使得取代基效应更为显著.咔唑类化合物被广泛作为荧光材料,但用于电化学方面的研究很少.本文通过在咔唑类化合物中引入具有强吸电子性的硝基以提高该类化合物的氧化电位,并将其作为有机电催化媒质,采用间接电化学氧化的方式,在室温下研究醇的电化学催化氧化反应,合成相应醛类化合物.我们合成了三种含硝基咔唑类有机电催化剂,通过~1H NMR对其结构进行了鉴定.采用循环伏安法测试了该类有机电催化剂的电化学氧化还原性能.发现取代基的电子效应对有机电催化剂的氧化还原电位及电化学氧化还原可逆性有很大的影响,供电子基(–OCH~3)的引入使氧化电位负移(0.717 V),吸电子基(–Br)的引入使氧化电位明显正移(1.282 V).同时,取代基的引入有效改善了有机电催化剂的电化学可逆性,从而可以作为有效的电氧化还原媒质应用于电化学氧化反应中.而当把化合物中的NO~2还原为NH~2后,咔唑类化合物的电化学氧化还原可逆性完全消失,表明硝基的引入对咔唑类有机电催化剂的电化学性能有很大的影响.循环伏安结果发现,在咔唑类硝基化合物的作用下,对甲氧基苯甲醇(p-MBzOH)的电化学氧化峰电位从1.350 V降至1.286 V,表明可以在较低电位下进行电解,有效降低了电氧化反应的能耗,同时氧化峰电流明显增加,说明该类有机电催化剂对p-MBzOH具有良好的电催化性能.随着p-MBzOH浓度的增加,氧化峰电流也明显增大,说明在咔唑类有机电催化剂的作用下,p-MBzOH可以在比较高的浓度下进行电化学氧化电解.通过对不同对位取代基的苯甲醇类化合物进行循环伏安研究,发现含硝基咔唑类化合物对具有较高氧化电位的反应底物均表现出良好的电催化氧化性能.在含硝基咔唑类有机电催化剂的氧化电位(1.28 V)和室温下,对不同浓度的p-MBzOH进行恒电位电解6 h,发现当催化剂的用量为底物的2.5 mol%时,p-MBzOH可以完全转化为相应的醛类目标产物.而且恒电位电解后分离回收的含硝基咔唑类有机电催化剂仍具有良好的电化学氧化还原可逆性.  相似文献   

3.
张红梅  周卫强  杜玉扣  杨平  徐景坤 《化学学报》2010,68(24):2529-2534
在ITO导电玻璃上, 采用循环伏安法制备Pt-Au复合催化剂. 通过扫描电镜(SEM), X射线能量色散谱(EDX), X射线衍射(XRD)及其电化学方法对催化剂样品进行了表征. SEM结果表明, Pt-Au复合催化剂的形貌近似球状粒子. 循环伏安法和计时电流法的测试结果表明, 复合催化剂中Au的加入有利于甲醇的电催化氧化, 并提高了Pt对甲醇氧化的抗毒化能力. 同时研究了复合催化剂中Au的不同含量对甲醇氧化的影响, 结果表明, 当 Pt和Au物质的量比为1.07∶1时, Pt-Au/ITO催化剂具有最佳的甲醇电催化氧化活性.  相似文献   

4.
周蓉  张红梅  杜玉扣  杨平 《化学学报》2011,69(13):1533-1539
以玻碳电极(GCE)为基体, 采用恒电位法制备Pt-Au双金属催化剂. 通过扫描电镜(SEM), X射线能量色散谱(EDX)及电化学方法对催化剂样品进行了表征. SEM结果表明, Pt-Au双金属催化剂的形貌近似球状, 表面粗糙. 循环伏安法和计时电流法的测试结果表明, Au的加入有利于双金属催化剂上甲酸的电催化氧化, 并提高了催化剂对甲酸氧化的抗毒化能力. 而甲酸在催化剂上的氧化机理则通过电化学阻抗技术得到进一步说明. 同时研究了双金属催化剂中Au的不同含量对甲酸氧化的影响, 当 Pt和Au物质的量比为1∶1.803时, Pt-Au/GC催化剂具有最佳的甲酸电催化氧化活性.  相似文献   

5.
后重氮偶合法制备含硝基偶氮苯咔唑类聚合物   总被引:3,自引:0,他引:3  
后重氮偶合;咔唑;生色团;后重氮偶合法制备含硝基偶氮苯咔唑类聚合物  相似文献   

6.
相转移催化下双媒质体系对醇类的选择性间接电氧化   总被引:5,自引:0,他引:5  
于伯章  李毅 《合成化学》1996,4(1):93-95
在相转移催化剂(Bu4NHSO4)作用下,用Cr(Ⅵ)/Cr(Ⅲ)及Ag(Ⅱ)/Ag(Ⅰ)双媒质体系对醇类进行间接电氧化,产率为75.4~97.5%,电流效率达60.2~75.8%,双媒质体系可重复使用。  相似文献   

7.
二甲醚电氧化及其阳极催化剂研究   总被引:6,自引:0,他引:6  
Anode electro-catalysts for direct dimethyl-ether fuel cell (DDFC), Pt/C, PtRu/C (1∶1) and PtSn/C (3∶2), were prepared by chemical impregnation-reduction method with formaldehyde as the reductant. DME electro-oxidation and adsorption at Pt electrode and Pt electro-catalysts were investigated by Cyclic Voltammetry(CV), Quasi-steady state polarization and Gas Chromatography(GC). CV showed that there were two current peaks of DME electro-oxidation at Pt electrode around 0.8V (vs RHE); DME was adsorbed at Pt electrode more weakly and slowly than oxygen, methanol, even hydrogen; the onset potential of DME oxidation was 50mV less than that of methanol, and DME peak potential 110 mV lower, thus more advantageous for using in fuel cells than methanol. GC showed that small amount of HCHO was generated during DME electro-oxidation. The mechanism of DME electro-oxidation was proposed. Among the three electro-catalysts (Pt/C, PtRu/C and PtSn/C), Pt alloy catalysts, especially PtRu/C, showed a higher performance toward DME electro-oxidation, as in the case of methanol. Temperature experiments showed that both DME electro-oxidation and adsorption on Pt and Pt alloy catalysts were favored with increased temperature.  相似文献   

8.
 在多壁碳纳米管负载的 Pt-RuOxHy 样品中引入氧化钨 (WOm), 能有效抑制样品中水合氧化钌 (RuOxHy) 在酸性电解质溶液中的溶解. 在扩展电势 (–0.20~0.96 V vs SCE) 的电化学预处理过程中, RuOxHy 的溶解程度从 Pt-RuOxHy 中的 70% 降至 Pt-RuOxHy-WOm 中的 15%. 计时电流曲线测试结果表明, 与窄电势区间 (–0.20~0.46 V vs SCE) 预处理的钌物种没有流失的样品相比, 经扩展电势区间预处理的 Pt-RuOxHy-WOm 样品上甲醇电氧化反应的活性没有下降, 而 Pt-RuOxHy 样品的活性则下降 50%.  相似文献   

9.
乙醇电氧化(EOR)是直接乙醇燃料电池和电解乙醇制氢共有的阳极反应.Au@Pt核壳和AuPt合金是广泛使用的两种电催化材料,迄今尚无两者对EOR性能的对比研究.以CO作为还原剂和淬灭剂合成了近似Pt单层的Au@Pt/C催化剂,作为对照,以NaBH4还原法合成了相同Au∶Pt物质的量比和金属载量的AuPt/C催化剂;运用透射电子显微镜(TEM)、扫描透射电子显微镜-能谱仪(STEM-EDS)、X射线粉末衍射(XRD)和X射线光电子能谱(XPS)等手段综合表征了两者结构之差异,同时以电化学循环伏安法和计时电流法测试了在碱性体系中其对EOR的电催化性能.结果表明,相比于商业化的Pt/C和Au/C,Au@Pt/C和AuPt/C对EOR的活性和稳定性均有着显著提升;Au@Pt/C对EOR的电催化活性和对C-C键断裂能力略优于AuPt/C.双金属催化剂中Au与Pt之间的晶格应力和部分电荷转移等效应可能是其性能提升的主要原因.  相似文献   

10.
相转移催化下肟类的选择性间接电氧化研究   总被引:1,自引:0,他引:1  
李青  李毅 《合成化学》1995,3(3):279-281
以Ce^4+/Ce^3+为间接电氧化还原体系,在相转移催化剂PhCH2N(C2H5)3Cl存在下,对肟类化合物进行选择性间接电氧化。结果表明,在室温条件下,电解2h,肟类能被选择性地氧化为相应的羰基化合物,收率75-95.6%。  相似文献   

11.
A simple and mild synthesis of selenotheophyllines is described based on the reaction of 7-alkyl-8-chlorotheophylline with sodium hydrogenselenide followed by reactions with halocompounds such as chloroacetonitrile, ethyl chloroacetate, chloroacetamide, and ethyl chloroformate. Elemental analysis, infrared, 1H NMR, 13C NMR, and mass spectral data confirmed the structure of the newly synthesized compounds.  相似文献   

12.
FDU-15 is a hexagonal mesoporous material with nanometer-sized, highly ordered arrays and large special surface area. In this work, FDU-15-Pt with 2.0%, 5.0% and 8.0% Pt loading were synthesised and used for electrochemical detection of trace nitroaromatic compounds (NACs). The FDU-15-Pt samples were characterised by CO Chemisorption, transmission electron microscopy (TEM) and X-ray diffraction (XRD). It has been demonstrated that FDU-15-Pt with 2.0% Pt loading has the smallest Pt particle size of 2.9?nm, highest Pt metal dispersion of 37.7% and largest Pt metal surface area of 21.36?m2?g?1. The FDU-15-Pt/PDDA modified electrode were assembled by electrostatic adsorption of Poly (diallyldimethylammonium chloride) (PDDA) and FDU-15-Pt. The 2.0% FDU-15-Pt modified sensor showed higher selectivity for NACs than those of 5.0% and 8.0% FDU-15-Pt, which were verified by electrochemical experiments. A linear response over TNT concentration ranging from 8.8?×?10?9?M to 1.2?×?10?5 M was exhibited with a low detection limit of 2.9?×?10?9?M (S/N?=?3). Moreover, the proposed 2.0% FDU-15-Pt/PDDA modified sensor has been applied to the detection of NACs in spiked environmental water samples and shows promise for fast and accurate determination of trace NACs in real samples.  相似文献   

13.
A series of MenAg0.3Mo0.5P0.3Oy (Me=Cu, Zn, Mn, W, Ce, Pr, Nd) and Ag0.3Mo0.5P0.3Ox catalysts were prepared. The addition of Ce to Ag0.3Mo0.5P0.3Ox catalysts improved the catalytic performance in selective oxidation of propane to acrolein, and Ce0.1Ag0.3Mo0.5P0.3Ox catalysts showed the highest acrolein selectivity (28.7%) and yield (4.4%). The physicochemical properties of Ag0.3Mo0.5P0.3Ox and CenAg0.3Mo0.5P0.3Ox (n=0.1–0.5) catalysts have been comparatively characterized by BET, XRD, H2-TPR, XPS, EPR and C3H8(C3H6)-TPD. Significant differences in physicochemical properties between Ag0.3Mo0.5P0.3Ox and Ce doped Ag0.3Mo0.5P0.3Ox catalysts have been observed, which is due to the formation of the redox cycle (Ce3++Mo6+Ce4++Mo5+) in the CenAg0.3Mo0.5P0.3Oy catalyst. Such effect modified the reducibility, the concentration of Mo5+, the activation of propane and the transformation of possible intermediate propene to acroelin, which in return greatly influenced the catalytic performance of Ce doped Ag0.3Mo0.5P0.3Ox catalysts in selective oxidation of propane to acroelin. The proper addition of Ce to Ag0.3Mo0.5P0.3Ox catalyst improved the acrolein selectivity and yield.  相似文献   

14.
Herein, we present a facile approach for the synthesis of polymeric ionic liquids (PILs) microspheres for metal scavenging and catalysis. Crosslinked poly(1‐butyl‐3‐vinylimidazolium bromide) microspheres with the diameter of about 200 nm were synthesized via miniemulsion polymerization, in which 1,4‐di(vinylimidazolium) butane bisbromide was added as the crosslinker. Anion exchange of PIL microspheres with Pt precursor and followed by the reduction of Pt ions produced PIL microsphere supported Pt nanoparticle hybrids. The synthesized Pt nanoparticles with a diameter of about 2 nm are uniformly dispersed and strongly bound to the surface of PIL microspheres. The catalytic performances of PIL/Pt nanoparticle hybrids were evaluated for both the electrocatalytic oxidation of methanol and oxidation of benzyl alcohol. The PIL/Pt nanoparticle hybrids show better electrocatalytic activity towards the electrooxidation of methanol than pure Pt nanoparticles. Furthermore, they are effective and easily reusable catalysts for the selective oxidation of benzyl alcohol in aqueous reaction media, demonstrating that the synthesized PIL microspheres are suitable scaffolds for heterogeneous catalysts Pt. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
The reaction of CuCl2?2H2O and a tetradentate amine phenol ligand affords a dinuclear Cu(II) complex, 1, a new molecular electrocatalyst, whose structure has been determined by X-ray crystallography. Electrochemical studies show that 1 can efficiently produce hydrogen from acetic acid with a turnover frequency (TOF) of 50.1 (in DMF) or from water with a TOF of 104.3 (pH 7.0) moles of hydrogen per mole of catalyst per hour.  相似文献   

16.
Preparation of new MoS2 layered compounds, in which organic dyes (rhodamine 6G, oxazine 1, and thionine) were used as the guest components, was successfully realized in two reaction systems differing by the nature of molybdenum disulfide. In one system, MoS2 was used in the form of single-layer dispersion in aqueous media; in the other system, it was taken in the form of nanodispersed powdered material, res-MoS2, obtained by exfoliation-restacking procedure and suspended in non-aqueous solvent. Structures of prepared compounds are discussed on the basis of their compositions, X-ray diffraction and high-resolution transmission electron microscopy data. The hybrid compounds formed in single-layer dispersions were found to contain the MoS2 layers, each of which alternate with dye layer, whereas, in the case of res-MoS2 the same as well as the other sequences of organic and inorganic layers are formed depending on the reaction conditions. The vicinity of different-thickness domains was revealed within the guest layers of rhodamine and oxazine. It results from different packings of organic molecules and sufficient flexibility of molybdenum disulfide layers.  相似文献   

17.
18.
This paper describes the preparation and evaluation of molecularly imprinted polymers (MIPs) that display specificity toward diisopropyl methylphosphonate (DIMP) and tributyl phosphate (TBP). Polymer activity was assessed by solid-phase extraction and high-performance liquid chromatography experiments. Both DIMP- and TBP-specific vinylpyridine-based MIPs selectively retained their targets relative to a non-imprinted control. Proof-of-principle experiments demonstrated highly selective analysis of the targets from fortified complex matrix samples (diesel fuel, gasoline, and air extract concentrate). The retained MIP fractions gave near quantitative recovery of the target analytes with very low matrix background content. The same fraction from the control sorbent recovered only about half of the analyte and tended to be less pure.  相似文献   

19.
In this work, hollow Au/Pt alloy nanoparticles (NPs) with porous surfaces were synthesized in a two-step procedure. In the first step, tri-component Ag/Au/Pt alloy NPs were synthesized through the galvanic replacement reaction between Ag NPs and aqueous solutions containing a mixture of HAuCl4 and H2PtCl4. In the second step, the Ag component was selectively dealloyed with nitric acid (HNO3), resulting in hollow di-component Au/Pt alloy NPs with a porous surface morphology. The atomic ratio of Au to Pt in the NPs was easily tunable by controlling the molar ratio of the precursor solution (HAuCl4 and H2PtCl6). Hollow, porous Au/Pt alloy NPs showed enhanced catalytic activity toward formic acid electrooxidation compared to the analogous pure Pt NPs. This improved activity can be attributable to the suppression of CO poisoning via the “ensemble” effect.  相似文献   

20.
This article describes the synthesis of branched flower-like gold (Au) nanocrystals and their electrocatalytic activity toward the oxidation of methanol and the reduction of oxygen. Gold nanoflowers (GNFs) were obtained by a one-pot synthesis using N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid (HEPES) as a reducing/stabilizing agent. The GNFs have been characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical measurements. The UV-visible spectra show two bands corresponding to the transverse and longitudinal surface plasmon (SP) absorption at 532 and 720 nm, respectively, for the colloidal GNFs. The GNFs were self-assembled on a sol-gel-derived silicate network, which was preassembled on a polycrystalline Au electrode and used for electrocatalytic applications. The GNFs retain their morphology on the silicate network; the UV-visible diffuse reflectance spectra (DRS) of GNFs on the silicate network show longitudinal and transverse bands as in the case of colloidal GNFs. The GNFs show excellent electrocatalytic activity toward the oxidation of methanol and the reduction of oxygen. Oxidation of methanol in alkaline solution was observed at approximately 0.245 V, which is much less positive than that on an unmodified polycrystalline gold electrode. Reduction of oxygen to H2O2 and the further reduction of H2O2 to water in neutral pH were observed at less negative potentials on the GNFs electrode. The electrocatalytic activity of GNFs is significantly higher than that of the spherically shaped citrate-stabilized Au nanoparticles (SGNs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号