首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a sensitive and useful method for the determination of five fluoroquinolones (FQs), enoxacin, ofloxacin, ciprofloxacin, norfloxacin, and lomefloxacin in environmental waters, using a fully automated method consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography-tandem mass spectrometry (LC/MS/MS). These compounds were analysed within 7 min by high-performance liquid chromatography (HPLC) using a CAPCELL PAK C8 column and aqueous ammonium formate (pH 3.0, 5 mM)/acetonitrile (85/15, v/v) at a flow rate of 0.2 mL/min. Electrospray ionization conditions in the positive ion mode were optimized for MS/MS detection. In order to optimize the extraction of FQs, several in-tube SPME parameters were examined. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40 μL of sample at a flow-rate of 150 μL/min, using a Carboxen 1010 PLOT capillary column as an extraction device. The extracted compounds were easily desorbed from the capillary by passage of the mobile phase. Using the in-tube SPME LC/MS/MS method, good linearity of the calibration curve (r ≥ 0.997) was obtained in the concentration range from 0.1 to 10 ng/mL for all compounds examined. The limits of detection (S/N = 3) of the five FQs ranged from 7 to 29 pg/mL. The in-tube SPME method showed 60-94-fold higher sensitivity than the direct injection method (5 μL injection). This method was applied successfully to the analysis of environmental water samples without any other pretreatment and interference peaks. Several surface waters and wastewaters were collected from the area around Asahi River, and ofloxacin was detected in wastewater samples of a sewage treatment plant and other two hospitals at 17.5-186.2 pg/mL. The recoveries of FQs spiked into river water were above 81% for a 0.1 or 0.2 ng/mL spiking concentration, and the relative standard deviations were below 1.9-8.6%.  相似文献   

2.
We have developed a simple, rapid, and sensitive method for the determination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by on-line in-tube solid-phase microextraction (SPME) coupled with liquid chromatography-mass spectrometry (LC-MS). PFOA and PFOS were separated within 10 min by high-performance liquid chromatography using an Inertsil ODS-3 column and 10 mM ammonium acetate/methanol (35/65, v/v) as a mobile phase at a flow rate of 0.25 mL min−1. Electrospray ionization conditions in the negative ion mode were optimized for MS detection of PFOA and PFOS. The optimum in-tube SPME conditions were 20 draw/eject cycles with a sample size of 40 μL using a CP-Pora PLOT amine capillary column as the extraction device. The extracted compounds could be desorbed easily from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME LC-MS method, good linearity of the calibration curve (r = 0.9990 for PFOA, r = 0.9982 for PFOS) was obtained in the range of 0.05-5 ng mL−1 each compound. The detection limits (S/N = 3) for PFOA and PFOS were 1.5 and 3.2 pg mL−1, respectively. The method described here showed about 100-fold higher sensitivity than the direct injection method. The within-day and between-day precisions (relative standard deviations) were below 3.7 and 6.0%, respectively. This method was applied successfully to the analysis of PFOA and PFOS in environmental water samples and to the elution test from a Teflon®-coated frying pan without interference peaks. The recoveries of PFOA and PFOS spiked into river samples were above 81%, and PFOA was detected at pg mL−1 levels in environmental water samples and eluate from the frying pan.  相似文献   

3.
A simple and sensitive automated method, consisting of in-tube solid-phase microextraction (SPME) coupled with high-performance liquid chromatography-fluorescence detection (HPLC-FLD), was developed for the determination of 15 polycyclic aromatic hydrocarbons (PAHs) in food samples. PAHs were separated within 15 min by HPLC using a Zorbax Eclipse PAH column with a water/acetonitrile gradient elution program as the mobile phase. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40 μL of sample using a CP-Sil 19CB capillary column as an extraction device. Low- and high-molecular weight PAHs were extracted effectively onto the capillary coating from 5% and 30% methanol solutions, respectively. The extracted PAHs were readily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME HPLC-FLD method, good linearity of the calibration curve (r > 0.9972) was obtained in the concentration range of 0.05–2.0 ng/mL, and the detection limits (S/N = 3) of PAHs were 0.32–4.63 pg/mL. The in-tube SPME method showed 18–47 fold higher sensitivity than the direct injection method. The intra-day and inter-day precision (relative standard deviations) for a 1 ng/mL PAH mixture were below 5.1% and 7.6% (n = 5), respectively. This method was applied successfully to the analysis of tea products and dried food samples without interference peaks, and the recoveries of PAHs spiked into the tea samples were >70%. Low-molecular weight PAHs such as naphthalene and pyrene were detected in many foods, and carcinogenic benzo[a]pyrene, at relatively high concentrations, was also detected in some black tea samples. This method was also utilized to assess the release of PAHs from tea leaves into the liquor.  相似文献   

4.
Mutagenic and carcinogenic heterocyclic amines (HCAs) are formed during heating of various proteinaceous foods, but human exposure to HCAs has not yet been elucidated in detail. To assess long-term exposure to HCAs, we developed a simple and sensitive method for measuring HCAs in hair by automated on-line in-tube solid-phase microextraction (SPME) coupled with liquid chromatography–tandem mass spectrometry (LC–MS/MS). Using a Zorbax Eclipse XDB-C8 column, 16 HCAs were analyzed within 15 min. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40 μL sample at a flow rate of 200 μL min−1 using a Supel-Q PLOT capillary column as an extraction device. The extracted HCAs were easily desorbed from the column by passage of the mobile phase, with no carryover observed. This in-tube SPME LC–MS/MS method showed good linearity for HCAs in the range of 10–2000 pg mL−1, with correlation coefficients above 0.9989 (n = 18), using stable isotope-labeled HCA internal standards. The detection limits (S/N = 3) of 14 HCAs except for MeAαC and Glu-P-1 were 0.10–0.79 pg mL−1. This method was successfully utilized to analyze 14 HCAs in hair samples without any interference peaks, with quantitative limits (S/N = 10) of about 0.17–1.32 pg mg−1 hair. Using this method, we evaluated the exposure to HCAs in cigarette smoke and the suitability of using hair HCAs as exposure biomarkers.  相似文献   

5.
An online device is described in which analytes are extracted from a liquid sample by means of in-tube solid-phase microextraction (in-tube SPME), pulse released by rapid heating, and transferred to a gas chromatograph in a fully automated way. Switching of the sample and gas flows as well as the heating of the extraction tube and the valves is controlled by a remote computer system. Results obtained for river water and for aqueous standard solutions of phenanthrene are presented and are compared to the performance of standard SPME.  相似文献   

6.
A sensitive, selective, and reproducible in-tube polypyrrole-coated capillary (PPY) solid-phase microextraction and liquid chromatographic method for fluoxetine and norfluoxetine enantiomers analysis in plasma samples has been developed, validated, and further applied to the analysis of plasma samples from elderly patients undergoing therapy with antidepressants. Important factors in the optimization of in-tube SPME efficiency are discussed, including the sample draw/eject volume, draw/eject cycle number, draw/eject flow-rate, sample pH, and influence of plasma proteins. Separation of the analytes was achieved with a Chiralcel OD-R column and a mobile phase consisting of potassium hexafluorophosphate 7.5 mM and sodium phosphate 0.25 M solution, pH 3.0, and acetonitrile (75:25, v/v) in the isocratic mode, at a flow rate of 1.0 mL/min. Detection was carried out by fluorescence absorbance at Ex/Em 230/290 nm. The multifunctional porous surface structure of the PPY-coated film provided high precision and accuracy for enantiomers. Compared with other commercial capillaries, PPY-coated capillary showed better extraction efficiency for all the analytes. The quantification limits of the proposed method were 10 ng/mL for R- and S-fluoxetine, and 15 ng/mL for R- and S-norfluoxetine, with a coefficient of variation lower than 13%. The response of the method for enantiomers is linear over a dynamic range, from the limit of quantification to 700 ng/mL, with correlation coefficients higher than 0.9940. The in-tube SPME/LC method can therefore be successfully used to analyze plasma samples from ageing patients undergoing therapy with fluoxetine.  相似文献   

7.
A simple, rapid, and sensitive method using in-tube solid-phase microextraction (in-tube SPME) based on poly(methacrylic acid–ethylene glycol dimethacrylate) (MAA–EGDMA) monolith coupled to HPLC with fluorescence and UV detection was developed for the determination of five fluoroquinolones (FQs). Ofloxacin (OFL), norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENRO), and sarafloxacin (SARA) can be enriched and determined in the spiked eggs and albumins. CIP/ENRO in eggs and albumins of ENRO-treated hens were also studied using the proposed method. Only homogenization, dilution, and centrifugation were required before the sample was supplied to the in-tube microextraction, and no organic solvents were consumed in the procedures. Under the optimized extraction conditions, good extraction efficiency for the five FQs was obtained with no matrix interference in the process of extraction and the subsequent chromatographic separation. The detection limits (S/N=3) were found to be 0.1–2.6 ng g−1 and 0.2–2.4 ng g−1 in whole egg and egg albumin, respectively. Good linearity could be achieved over the range 2–500 ng mL−1 for the five FQs with regression coefficients above 0.9995 in both whole egg and albumin. The reproducibility of the method was evaluated at three concentration levels, with the resulting relative standard deviations (RSDs) less than 7%. The method was successfully applied to the analysis of ENRO and its primary metabolite CIP in the eggs and albumins of ENRO-treated hens.  相似文献   

8.
将管内固相微萃取与气相色谱法结合,建立了水中痕量有机物的在线分析装置。采用毛细管气相色谱柱作为萃取柱,水样中的分析物在萃取柱中被萃取浓缩,溶剂解吸后的样品通过阀切换和柱内进样技术直接由载气携带进入气相色谱柱。采用OV-1萃取柱,对水样中的5种芳烃的富集倍数为34~85。  相似文献   

9.
Summary ‘Free’ steroidal estrogens have been identified as compounds possibly responsible for endocrine-disruption of aquatic fauna populating rivers in which municipal sewage-treatment plants (STP) discharge their effluents. Natural and synthetic estrogens are excreted, as glucuronides and sulfates, by man, in the urine but these are bioconverted back to the unconjugated forms in wastewater discharges. For this reason we have developed a sensitive analytical procedure, without derivatization, for identification and quantitation of conjugated and free estrogens in surface and waste waters. The hormones were extracted and fractionated, by use of Carbograph cartridges, into neutral and acid fractions which were then analyzed by liquid chromatography-tandem mass spectrometry. Recoveries were between 66 and 100% and limits of detection (LOD) between 15.0 and 0.003 ng L−1, depending on the compound and the water matrix. When this methodology was applied to real sewage and river water we could measure the main free estrogens at ng L−1 levels. Among the conjugates we always observed the presence of estrone 3-sulfate (at levels between 8.0 and 0.5 ng L−1).  相似文献   

10.
Capillary liquid chromatography (cLC) hyphenated with tandem mass spectrometry (MS-MS) was used to separate and quantitate trace concentrations of five estrogens in aqueous samples. New C(18)-based sorption materials bound to the silica support by monomeric and polymeric mechanisms were compared and tested for solid-phase extraction (SPE) of selected analytes with respect to optimization of their preconcentration yield. Application of an endcapped, monomer-bound preconcentration Discovery DSC-18Lt column under the optimized conditions provides yields in the range from 95 to 100% with a high repeatability (n=3, RSD≤7.2%). Using the electrospray ionization in the positive mode (ESI+), the cLC-MS-MS system (the Zorbax SB C18 capillary column and a binary mobile phase of acetonitrile and water containing 0.1% formic acid in both the components) was optimized to attain a sufficient retention of the early eluting estriol, a satisfactory resolution of the analytes and the maximum sensitivity of the determination. Both the isocratic and gradient elution were used and the optimized gradient method permitted analyses of aqueous environmental samples in 14 min within a linearity range from 6.1 to 25.0 (LOQ of analytes) to 500 ng/L and with a very good linearity (r>0.9981) for all the estrogens studied. The detection limits are in the range from 3.0 to 6.8 ng/L (1 μL injection volume). Six environmental water samples were analyzed and the studied estrogens were found in the Vltava river sample collected in Prague (13.2 ng/L for 17β-estradiol) and in the inlet to the wastewater treatment plant in Prague, at an overall concentration of 371.4 ng/L.  相似文献   

11.
The performance of a monolithic C(18) column (150 mm×0.2 mm i.d.) for multiresidue organic pollutants analysis by in-tube solid-phase microextraction (IT-SPME)-capillary liquid chromatography has been studied, and the results have been compared with those obtained using a particulate C(18) column (150 mm×0.5 mm i.d., 5 μm). Chromatographic separation has been carried out under isocratic elution conditions, and for detection and identification of the analytes a UV-diode array detector has been employed. Several compounds of different chemical structure and hydrophobicity have been used as model compounds: simazine, atrazine and terbutylazine (triazines), chlorfenvinphos and chlorpyrifos (organophosphorous), diuron and isoproturon (phenylureas), trifluralin (dinitroaniline) and di(2-ethylhexyl)phthalate. The results obtained revealed that the monolithic column was clearly advantageous in the context of multiresidue organic pollutants analysis for a number of reasons: (i) the selectivity was considerably improved, which is of particular interest for the most polar compounds triazines and phenyl ureas that could not be resolved in the particulate column, (ii) the sensitivity was enhanced, and (iii) the time required for the chromatographic separation was substantially shortened. In this study it is also proved that the mobile-phase flow rates used for separation in the capillary monolithic column are compatible with the in-valve IT-SPME methodology using extractive capillaries of dimensions similar to those used in conventional scale liquid chromatography (LC). On the basis of these results a new method is presented for the assessment of pollutants in waters, which permits the characterization of whole samples (4 mL) in less than 30 min, with limits of detection in the range of 5-50 ng/L.  相似文献   

12.
A multi-residue method using liquid chromatography coupled to triple quadrupole tandem mass spectrometry (LC-MS/MS), associated with solid-phase extraction (SPE), was developed for the determination of 21 pesticides in water samples. The compounds investigated are used for the maintenance of golf courses and ordinarily measured by gas chromatography-mass spectrometry (GC-MS). Electrospray ionisation (ESI) was applied to all compounds, and LC and MS conditions were optimised to measure them under SRM mode. This method showed excellent linearity ranges for all pesticides, with correlation coefficients greater than 0.996. Two kinds of extraction cartridges, namely, styrene divinylbenzene polymer (Sep-Pak PS-2) and divinylbenzene-N-vinylpyrrolidone copolymer (Oasis HLB), were tested and the extraction conditions were optimised. All the pesticides were determined using acetonitrile and ethyl acetate as eluents in both cartridges, and good recoveries (>77%) and repeatability with low relative standard deviations (RSDs, <12%) were achieved from ultra-pure water. In addition, satisfactory recoveries (>76%) and low intra-day and inter-day RSDs (<15%) of all pesticides were also obtained with the Sep-Pak PS-2 cartridge when using river water. The method limits of detection (LODs) ranged between 0.068 (diazinon) and 3.9 (triclopyrbutoxyethyl)?ng?L?1. The analytical method was successfully applied for the determination of pesticides in surface river water.  相似文献   

13.
建立了新型整体柱固相微萃取-超高效液相色谱/串联质谱分析植物中10种痕量细胞分裂素的分析方法.通过1,4-二苯基丁二炔与六(3-巯基丙酸)二季戊四醇酯巯-炔点击聚合制备了通透性较好的固相微萃取整体柱,采用红外光谱、扫描电镜进行了表征.研究了最佳萃取条件和该方法对细胞分裂素的富集能力,结果表明,方法线性范围为0.0250...  相似文献   

14.
Xie W  Han C  Qian Y  Ding H  Chen X  Xi J 《Journal of chromatography. A》2011,1218(28):4426-4433
This work reports a new sensitive multi-residue liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detection, confirmation and quantification of six neonicotinoid pesticides (dinotefuran, thiamethoxam, clothiandin, imidacloprid, acetamiprid and thiacloprid) in agricultural samples (chestnut, shallot, ginger and tea). Activated carbon and HLB solid-phase extraction cartridges were used for cleaning up the extracts. Analysis is performed by LC-MS/MS operated in the multiple reaction monitoring (MRM) mode, acquiring two specific precursor-product ion transitions per target compound. Quantification was carried by the internal standard method with D(4)-labeled imidacloprid. The method showed excellent linearity (R(2)≥0.9991) and precision (relative standard deviation, RSD≤8.6%) for all compounds. Limits of quantification (LOQs) were 0.01 mg kg(-1) for chestnut, shallot, ginger sample and 0.02 mg kg(-1) for tea sample. The average recoveries, measured at three concentrations levels (0.01 mg kg(-1), 0.02 mg kg(-1) and 0.1 mg kg(-1) for chestnut, shallot, ginger sample, 0.02 mg kg(-1), 0.04 mg kg(-1) and 0.2 mg kg(-1) for tea sample), were in the range 82.1-108.5%. The method was satisfactorily validated for the analysis of 150 agricultural samples (chestnut, shallot, ginger and tea). Imidacloprid and acetamiprid were detected at concentration levels ranging from 0.05 to 3.6 mg kg(-1).  相似文献   

15.
A simple, rapid, and sensitive method is presented to determine seven trace quinolone antibacterials simultaneously in milk, egg, chicken and fish. This method is based on the combination of polymer monolith in-tube solid-phase microextraction with liquid chromatography and electrospray ionization quadrupole time-of-flight mass spectrometry (LC/ESI-QTOF-MS). LC/ESI-QTOF-MS offers the capability of unequivocal identification of target compounds from complex matrices, as well as the possibility of quantitation at low-level concentrations in real samples. The extraction was performed with a poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic column. Under the optimized extraction conditions, good extraction efficiencies for the targets were obtained with no matrix interference in the subsequent LC/ESI-QTOF-MS. Good linearities were obtained for seven quinolones with the correlation coefficients (R) above 0.9951. The limits of detection (S/N = 3) for seven quinolones were found to be 0.3–1.2 ng/g in egg, 0.2–3.0 ng/mL in milk, 0.2–0.7 ng/g in chicken and 0.2–1.0 ng/g in fish. The recoveries of quinolones spiked in four different matrices ranged from 80.2 to 115.0%, with relative standard deviations less than 14.5%. The developed method was applied for the determination of quinolone residues in animal-producing food, and the positive samples were confirmed with high number of identification points (IPs) according to the IP system defined by the European Union (Commission Decision 2002/657/EC).  相似文献   

16.
A silica nanoparticle (NP)-deposited capillary fabricated by liquid-phase deposition (LPD) and modified with octadecyl groups was introduced for in-tube solid-phase microextraction coupled to high-performance liquid chromatography with UV detection (in-tube SPME–HPLC). The resultant capillary (60 cm × 50 μm I.D.) was demonstrated to be of higher extraction capacity by comparing with an octadecyl-grafted bare capillary and an octadecyl-grafted silica-coated capillary that was prepared by sol–gel chemistry. Two groups of compounds, endocrine disruptors and polycyclic aromatic hydrocarbons, were used as model analytes to further evaluate extraction capacity of the silica NP-deposited capillary, and its reproducibility and stability was also investigated. The extraction time profiles were monitored for all the chemicals, and their limits of detection were calculated to be in the range of 0.42–0.78 and 0.034–0.19 ng/mL with RSD values of peak area less than 4.6%.  相似文献   

17.
In the present work, a simple and fast methodology has been developed for the analysis of chlorotoluenes in water samples using solid-phase microextraction (SPME) coupled to gas chromatography-tandem mass spectrometry (GC/MS/MS). A multifactorial experimental design strategy was used for studying the influence on extraction yield of factors such as fiber coating, extraction mode, temperature, and addition of sodium chloride. Quantitative recoveries (>/=84%) and satisfactory precision (relative standard deviations (RSD)相似文献   

18.
Yuling Hu 《Talanta》2010,80(5):2099-46
The combination of molecular imprinting and solid-phase microextraction (SPME) technique provides a powerful sample preparation tool in terms of selectivity, simplicity, and flexibility. This paper reports a novel molecularly imprinted polymer (MIP) coated SPME fiber with 17β-estradiol as template by improved multiple co-polymerization method. The obtained fiber exhibits excellent characteristics such as high porosity, good thermal and chemical stability. Extraction performance shows that the MIP-coated fiber has stronger affinity to the template molecule as compared with the commercial SPME fibers and the control polymer-coated fiber without addition of template. Owing to the shape and structural compatibility, the obtained fiber also demonstrated specific selectivity to the structural related compounds of 17β-estradiol, such as estriol, estrone and 17α-ethynylestradiol, and thus can be applied to simultaneous determination of these estrogens from complex samples coupled with high performance liquid chromatography. The variables that influence extraction were investigated. The MIP-coated fiber demonstrated its efficiency for extraction of estrogens in fishery samples. The detection limits were in the range of 0.98-2.39 μg L−1, and the recoveries were 80.0-83.6% and 85.0-94.1% for fish and shrimp tissue samples, respectively.  相似文献   

19.
A new device for carbonyl compounds based on coupling on-line and miniaturizing both, sample pretreatment and chromatographic separation, is reported. Two capillary columns, a GC capillary column (95% methyl-5% phenyl substituted backbone, 70 cm × 0.32 mm i.d., 3 μm film thickness) in the injection valve for in-tube solid-phase microextraction (IT-SPME) and a Zorbax SB C18 (150 mm × 0.5 mm i.d., 5 μm particle diameter) LC capillary column were employed. Different combinations of IT-SPME and derivatization using 2,4-dinitrophenylhydrazine (DNPH) were examined for mixtures containing 15 carbonyl compounds (aliphatic, aromatic and unsaturated aldehydes and ketones). A screening analysis of aqueous extracts of atmospheric particulate PM(10) was carried out. Moreover, the possibility of coupling IT-SPME and conventional liquid chromatography is also tested. Derivatization solution and IT-SPME coupled to capillary liquid chromatography provided the best results for achieving the highest sensitivity for carbonyl compounds in atmospheric particulate analysis. Detection limits (LODs) using a photodiode array detector (DAD) were ranged from 30 to 198 ng L(-1), improving markedly those LODs reported by conventional SPME-LC-DAD.  相似文献   

20.
This paper describes the liquid-phase microextraction (LPME) of tributyltin (TBT) and triphenyltin coupled with gas chromatography-tandem mass spectrometry. The 4-fluorophenylation and ethylation reactions were used for the derivatization of the organotins. For the two derivatizations, the LPME parameters such as organic solvent, stirring rate, temperature, extraction time and the other additional conditions were examined. Using pure water, the calibration curves, method detection limits (MDLs) and reproducibilities (RSDs) of the two derivatizations were compared under the respective optimized procedures. The 4-fluorophenyl derivatization, which showed a lower MDL (0.36 ng/l) and better reproducibility (RSD = 11% at 10 ng/l) for TBT, was applied to the analysis of seawater. The TBT was detected in the range from 1.1 to 2.0 ng/l in the seawater samples collected in Osaka Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号