首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一种高精度光纤测温系统工作波长的优化设计   总被引:3,自引:0,他引:3  
基于基尔霍夫定律 ,利用钽酸锂热释电探测器设计了一种实用化的双波长、高精度光纤测温系统。依照测温系统中单个探测器的温度分辨力、R(T)~T曲线的线性度、R(T)~T曲线的温度灵敏度及其相对温度灵敏度与各主要技术参量之间的关系 ,对采用钽酸锂热释电探测器作光电转换器件实现的实用化实时测温系统的工作波长进行了优化设计。实验表明 ,在测温范围 4 0 0~ 130 0℃内 ,当系统工作在λ1=2 .1μm、λ2 =2 .3μm时 ,其温度灵敏度高于 1.0× 10 -4℃ -1,相对温度灵敏度不低于 0 9,测温精度不低于 0 15 %。均符合设计要求  相似文献   

2.
介绍了一种利用钽酸锂热释电探测器实现的实用化双波长光纤测温仪。测温仪由光学接收系统、信号放大与处理系统及显示系统三部分组成。依照探测器系统的温度分辨率、R(T)~T曲线的线性度及温度灵敏度与各主要技术参数之间的关系,在考虑光路中的选择性吸收气体的影响及探测器的最小可探测功率的基础上,对其工作波长及波长带宽进行了优化设计。分析了仪器的工作波长及波长带宽对温度分辨率及测温灵敏度的影响。结果表明,在测温范围400~1300℃内,当λ1=2 1μm、λ2=2 3μm、Δλ3=20nm时,其测温精度高于0 20%。  相似文献   

3.
一种实用化实时测温系统工作波长优化设计的进一步分析   总被引:1,自引:1,他引:0  
基于Kirchhoff定律,依照测温系统的各主要技术参数与各主要技术指标(温度分辨力、测温灵敏度、相对测温灵敏度及测温准确度)之间的关系,对利用激光并采用钽酸锂热释电探测器作光电转换器件的实用化实时测温系统的工作波长进行了进一步的优化设计.实验表明,在测温范围400~1200 ℃内,系统的测温误差符合设计要求.  相似文献   

4.
基于Kirchhoff定律,利用一面反射镜,设计了一种可同时测量发射率及温度的单波长实时测温系统.从系统的测温灵敏度、相对测温灵敏度、探测器的温度分辨力及系统的测温标准差与波长的关系出发,并结合大气对红外辐射的透射特性,优化了系统的工作波长; 从系统的抗反射辐射能力与波长带宽的关系出发,并结合探测器的最小可探测光功率要求,优化了系统的波长带宽.实验结果表明,当λ=0.80 μm、Δλ=20 nm时,在测温范围600~2 500℃内,系统的测温不确定度优于0.3%.  相似文献   

5.
在介绍一种利用钽酸锂热释电探测器实现的实用化双波长光纤测温仪的基础上,着重讨论了反射辐射、探测器周围环境的热辐射、仪器工作波长的带宽,以及光路中选择性吸收气体的光谱吸收等多种因素对仪器测温精度的影响,并提出了相应的抑制措施。实验表明,采取相应的抗干扰措施后,在系统要求的测温范围400—1360℃内,其测温精度符合设计要求。  相似文献   

6.
一种实用化实时测温系统的优化设计   总被引:11,自引:1,他引:10  
基于基尔霍夫定律,利用半导体激光器及钽酸锂热释电探测器设计了一种实用化的实时测温系统。依照测温系统各主要技术指标(温度分辨力、温度的标准偏差及测温范围)与各主要技术参量(激光光源的能量、波长、放大器的带宽及光学系统的相对孔径等)之间的关系,对实时测温系统的各主要参量(激光光源的能量、光学系统的相对孔径及放大器的带宽)进行了优化设计。实验表明,在测温范围673~1473K内,温度测量的不确定度优于0.3%,分辨力优于0.4K,均符合设计要求。  相似文献   

7.
为了评定基于室温中红外HgCdTe光导探测器的氟化氘激光阵列靶斑仪系统的测量不确定度,需要对HgCdTe光导探测器响应率的温度特性进行定量分析.理论分析了室温中波红外HgCdTe光导探测器响应率与温度和波长的关系,得出了在一定范围内探测器响应率可以近似表示为温度和波长变量分离函数形式的假设.采用波长为3.8μm和1.31 μm激光光源,分别测量了在-40℃~+30℃温度范围内室温中波红外HgCdTe探测器响应率变温特性,实验结果验证了在测量不确定度范围内假设的正确性.基于此结论,提出了一种高效标定HgCdTe光导探测器在氟化氘激光波长处响应率温度特性的实用方法.  相似文献   

8.
我国温度计量标准的研究进展   总被引:1,自引:0,他引:1  
一、引 言 在我国温度计量领域中,研究工作首先着眼于建立国际实用温标,也就是1968年国际实用温标(IPTS-68),这是统一我国温度量值的基础[1].在这方面中国计量科学研究院已复现全部十三个定义固定点,从金的凝固点(1064.43℃)到平衡氢的三相点(13.81K),并研制了IPTS-68所规定的各种标准器. 二、辐射法测温 辐射测温学在工业和科学研究中占有重要的地位.按照IPTS-68的定义规定,1064.43℃以上的温度由普朗克公式得到.式中Lλ(T68),Lλ(TAU)是波长为λ,温度为T68和TAU时黑体的光谱辐射亮度;λ是波长(实际上是有效波长,用λe代替);C2是…  相似文献   

9.
介绍了采用PIN硅光电二极管作光接收器件实现的一种被动式实时测温系统。该系统主要由光学接收系统、信号放大与处理系统及显示系统三部分组成。从系统的相对测温灵敏度及探测器的温度分辨力与波长间的关系出发,结合大气对红外辐射的透射特性,确定了系统的工作波长;从系统的抗反射辐射能力出发,并结合探测器的最小可探测光功率要求,确定了系统的波长带宽。从P1、P2的测量不确定度出发,讨论了待测目标的发射率及温度的测量精度。结果表明,当λ=0.80μm、Δλ=20nm时,在测温范围600~2500℃内,系统的测温不确定度优于0.3%,满足设计要求。  相似文献   

10.
采用激光加热基座法制备端部Cr3+离子掺杂的蓝宝石单晶光纤,得到一体型蓝宝石单晶光纤荧光温度传感头.对所制备的荧光温度传感头的荧光温度特性进行了实验研究.结果表明,随着温度升高Cr3+∶Al2O3单晶光纤荧光寿命单调下降,从温度为0 ℃的4.0 ms下降到450 ℃的0.2 ms.利用所制备的荧光温度传感头,用波长405 nm紫色LED作为泵浦光源,采用相关检测技术在线实时测量荧光寿命,研制成测温范围0 ℃~450 ℃一体型蓝宝石光纤荧光温度传感器.  相似文献   

11.
高精度非致冷长波红外热像仪的辐射标定   总被引:2,自引:0,他引:2  
张晓龙  刘英  孙强 《中国光学》2012,5(3):235-241
为使非致冷长波红外热像仪在不同温度下保持较高的测温精度,建立了考虑探测器工作温度效应的非致冷长波红外热像仪的辐射标定模型。对非致冷长波红外热像仪进行辐射标定实验,在不同黑体温度和不同亮度增益值条件下,获得了16组图像灰度与探测器工作温度之间的函数关系,建立了目标温度的数学计算模型,并对定标结果进行了实验验证。结果表明:在25~40℃,探测器的工作温度效应可做线性化处理,且与目标温度无关。通过设定合适的亮度增益值可使红外热像仪的测温误差〈0.5℃,极大地提高了非致冷长波红外热像仪在不同温度环境下的测温精度。  相似文献   

12.
作为燃气轮机的核心部件,涡轮叶片长期在上千度的高温下工作,为了保证叶片安全可靠地运行,需要对其温度进行实时的监测。辐射测温是目前涡轮叶片非接触式测温的主流方法,其测温精度与叶片材料反射特性关系密切,如何预测不同方向反射能量的大小,减小反射辐射对测温结果的影响是目前研究的难点。为了预测叶片反射能量大小,提高辐射测温的准确性,对涡轮叶片常见材料——完全氧化DZ125的双向反射分布函数(BRDF)进行研究。采用对比法作为实验测量的方法,先分析了BRDF对比法测量原理及数据处理方法,之后自主搭建了试验台,在温度分别为25, 900和1 100℃,波长分别为1 060, 1 550和1 908 nm的条件下,控制入射天顶角及反射天顶角在0°~60°范围变化,方位角在0°~180°范围变化,测量计算出了多组BRDF值,分析了各种因素对完全氧化DZ125的BRDF的影响。最后采用Modified Phong模型对BRDF测量值进行了拟合,并与实验测量结果进行了对比,得到了较好的结果。研究结果表明,温度、波长对完全氧化DZ125的BRDF影响较小,在涡轮叶片工作的温度范围变化不大,辐射波长变化不大时,...  相似文献   

13.
TH812 2005022378 一种双波长光纤测温系统波长带宽的优化设计=Optimi- zation of wavelength bandwidth for a dual-wavelength fi- ber-optic temperature measuring system[刊,中]/施德恒 (河南师范大学物理系.河南,新乡(453002)),孙金锋…// 中国激光.-2004,31(11).-1367-1372 基于Kirchhoff定律,利用钽酸锂热释电探测器设计 了一种实用化的双波长、高精度光纤测温系统。简要介绍 了该仪器的基本结构及其工作原理,并依照单个探测器的  相似文献   

14.
高掺镁铌酸钾晶体的主折射率及其温度系数的测量   总被引:1,自引:0,他引:1  
本文报道掺5mol%MgO的铌酸锂(liNbO_3)晶体的主折射率n_o、n_o及其温度系数.用自准直法在0.5398μm、0.6328μm、1.0795μm和1.3414μm波长上,并在20℃~160℃温度范周内,测量了该晶体的主折射率,并获得在这些波长上的折射率温度系数.修正的Sellmeier方程的常数也在20℃~160℃温度内推算出.用此结果计算室温的二次谐波I类临界相位匹配角与实验值符合得很好,又计算二次谐波的非临界相位匹配温度,其结果也与实验值较符合.  相似文献   

15.
硫系非晶态半导体Ge15TE81S2Sb2材料的玻璃转变温度Tg为123—127℃[1-4].第一个晶化峰温度Tc1为196—201℃[1,2],此时材料内有Te晶体析出.第二个晶化峰温度Tc2为216℃,此时材料内有GeTe晶体析出[1].当温度超过Tg点后,材料内键链将进行调整,键角将发生偏转,从而结构将松动,故Tg点后材料的结构有较大的变化.该材料的薄膜样品之Tg,丁c1和 Tc2温度都比块状样品要低一些, 陈光华等人[5]认为扩展态电导机理的温度范围分别是162℃(块体)与182℃(薄膜)到227℃之间.此温度范围已超过了Tg,也超过了Tc2。 材料内有大量的Te,GeTe晶体析出,发生了…  相似文献   

16.
一种简单的MR兼容测温装置   总被引:1,自引:0,他引:1  
在微创热疗中,活体测温是十分关键的技术. MRI图像除了具有无创伤、分辨率高、组织对比度高、多角度成像等优点外,还可以在治疗过程中及时反映组织温度信息,非常适用于热疗中对组织温度进行监控. 目前,低场MRI测温还处于初步研究阶段. 为了对低场MRI测温效果进行定量研究,需要一种具有MR兼容性的测温装置. 为此,本文提出了一种简单的MR兼容测温装置的设计方案. 该方案以通用热电偶和电子温度计为核心,具有成本低,易实现的特点. 所设计的测温装置在79 ℃~39 ℃范围内的测温精度为0.5 ℃,工作时对MRI图像质量无明显影响,操作简单, 读数方便,适用于对MRI测温效果进行定量研究.  相似文献   

17.
一个正在建设的位于韩国Y2L地下实验室的低能暗物质探测实验中,采用了CsI(T1)晶体反符合探测器作为主动屏蔽体.本工作对CsI(T1)晶体反符合探测器的实验性能进行了研究.通过FADC系统记录的脉冲波形数据,研究了探测器的能量分辨率和波形甄别的能力;研究相同能量γ射线入射到反符合探测器不同位置的相对光输出将有助于选择探测器的工作参数;为了解晶体自身放射性对暗物质测量的影响,利用低本底HPGe探测器对CsI(T1)晶体内部的放射性进行了测量,得到晶体内部Cs同位素的放射性活度.探测器系统进行了约18d的试运行取数.实验数据表明,CsI(T1)晶体探测器的反符合效率约为31%,HPGe探测器的本底计数率水平约为133cpd.为了进行暗物质探测研究,需要采取有效的方法进一步降低探测器的本底水平.  相似文献   

18.
对中国科学院近代物理研究所自行生长的铊激活碘化铯闪烁晶体CsI(T1)光输出及Hamamtsu公司生产的S8664-1010型雪崩光二极管(APD)增益对温度的依赖关系做了系统研究.结果表明,CsI(T1)晶体光产额在室温范围内随着温度的增加而增加,在-2℃—8℃温度范围内的平均温度系数为0.67%/℃,在8℃—25℃温度范围内的平均温度系数为0.33%/℃.而对所使用的APD,其增益在室温范围内的温度系数为-3.68%/℃(工作电压400V).APD结合CsI(T1)晶体在室温下对~(137)Cs的662keYγ射线的能量分辨可达5.1%.  相似文献   

19.
MOCVD原位红外测温方法主要有单色辐射测温法与双波长比色测温法。利用薄膜等厚干涉模型与Kirchhoff定律计算了Si (111)衬底生长10 m GaN外延片的940 nm、1 550 nm光谱发射率,以Thomas Swan CSS MOCVD为例,比较了500 ℃至1 300 ℃范围内,940 nm单色辐射测温法、1 550 nm单色辐射测温法、940 nm与1 550 nm双波长比色测温法的相对误差和相对灵敏度,以及单色辐射测温法与双波长比色测温法的校准修正,并利用940 nm与1 550 nm双波长比色测温法在线监测了Si (111)衬底生长InGaN/GaN MQW 结构LED外延片过程中的温度。研究表明:940 nm与1 550 nm双波长比色测温法在相对误差及有效探测孔径修正校准上优于940 nm单色辐射测温法和1 550 nm单色辐射测温法,该结论可为MOCVD原位红外测温设备开发提供参考。  相似文献   

20.
《光学技术》2013,(3):200-203
实时监测变压器绕组温度,可解决变压器在运行过程中因绕组温度过高而造成的寿命减少、设备损坏等问题。使用绝缘纸做成的层压板对光纤测温触头进行封装,将测温触头安装在变压器绕组上。当绕组温度发生改变时,测温触头中的光纤Bragg光栅中心波长将产生移位。温度响应实验表明,光纤Bragg光栅温度传感器的线性度为0.79%FS;温度灵敏度为8.91pm/℃,重复性误差1.76%FS。绕组测温实验结果表明,环境温度为15℃时,在75V电压下,90min后,绕组温度稳定在24℃~25℃之间在;100V电压下,105min后,绕组温度稳定在32℃~33℃之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号