首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
仿生人工软骨材料的摩擦磨损性能及润滑机理研究   总被引:5,自引:2,他引:3  
采用原位复合法制备聚乙烯醇水凝胶(PVA-H),采用模板-滤取法制备多孔超高分手量聚乙烯(UHMWPE)材料,对比研究了这2种材料在相同条件下的摩擦磨损性能,通过改变试验转速和载荷获得Stribeck曲线,并对其润滑机理进行分析.结果表明:干摩擦条件下,多孔UHMWPE和PVA-H的摩擦系数和磨损量均较大;在水润滑和牛血清润滑条件下,二者的摩擦磨损性能均得以改善,且PVA-H具有更低的磨损量.Stribeck曲线分析表明:仿生UHMWPE具有的多孔结构使得在其一定的区域内可以形成混合润滑区域;PVA-H具有更好的亲水性能和多孔结构,对应的Stribeck曲线谷底较宽,能够形成较宽的混合润滑区域和流体润滑区域,从而降低了接触区域的磨损量.  相似文献   

2.
碳纳米管改性聚四氟乙烯复合材料的摩擦磨损性能研究   总被引:22,自引:5,他引:17  
评价了用不同含量碳纳米管(CNTs)改性聚四氟乙烯(PTFE)复合材料的力学性能,利用MM-200型摩擦磨损试验机研究了CNTs含量对PTFE复合材料摩擦磨损性能的影响,借助于扫描电子显微镜观察分析了试样磨损表面及磨屑形貌,并探讨其磨损机理.结果表明:CNTs能够提高PTFE复合材料的硬度和冲击强度,在本文研究范围内,当CNTs的质量分数为7%时,PTFE复合材料的力学性能最佳;CNTs能够增加PTFE复合材料的摩擦系数、降低其磨损量,当其质量分数为10%时,PTFE复合材料的耐磨损性能最佳.纤维状碳纳米管可以阻止PTFE带状结构的大面积破坏,以及在摩擦过程中于偶件表面能够形成转移膜并隔离复合材料与偶件的直接接触是其减摩耐磨作用的主要原因.  相似文献   

3.
炭纤维增强铜锡锌基复合材料的摩擦磨损性能研究   总被引:1,自引:1,他引:0  
采用粉末冶金法制备了炭纤维增强铜锡锌基复合材料(Cf/Cu-Sn-Zn)和ZQSn663锡青铜, 并对其力学性能和摩擦磨损性能进行了对比研究. 结果表明: 当炭纤维的体积分数φf≤12%时,Cf/Cu-Sn-Zn复合材料的力学性能高于ZQSn663锡青铜;Cf/Cu-Sn-Zn复合材料的比磨损率小于ZQSn663锡青铜,当炭纤维体积分数φf=12%时,复合材料的摩擦磨损性能最佳;在摩擦磨损过程中,Cf/Cu-Sn-Zn复合材料的磨损机制主要为粘着磨损,而锡青铜呈现出粘着磨损和磨粒磨损特征.  相似文献   

4.
将改性玄武岩颗粒和氟化石墨构成的二元复合填料引入PTFE/Nomex混纺织物,制备了适用于高速工况的织物复合材料. 机械性能方面,二元填料的引入同时增加了复合材料的拉伸强度和断裂伸长率. 热学性能研究则证实,二元填料提高了复合材料的热稳定性能. 对摩擦对偶的扫描电镜(SEM)观察说明,改性玄武岩颗粒既能单独应用快速在摩擦对偶表面形成转移膜,又能与氟化石墨复配起到研磨作用,协助氟化石墨的部分原位剥离,极大增强复合材料的抗磨性能. 在高速摩擦磨损试验中,当载荷为10 MPa,线速度为0.98 m/s时,仅添加改性玄武岩颗粒的复合材料磨损率较未改性复合材料降低了32%. 当载荷为50 MPa,线速度为1.18 m/s时,二元填料改性的复合材料磨损率较未改性复合材料降低了53%.   相似文献   

5.
由于Ag_2MoO_4在100℃~600℃温度范围内具有良好的润滑性能以及良好的高温稳定性,本文采用高能球磨和粉末冶金技术制备以Ag_2MoO_4和Ag为复合润滑相的试样,并研究了室温时,润滑相含量对试样摩擦磨损性能的影响。研究表明:随着润滑相含量增加,烧结试样孔隙率明显降低;但当润滑相含量增加到15%以后,孔隙率降低不明显。常温时的摩擦实验表明:在润滑相含量(Ag_2MoO_4-Ag)从5%增加到20%时,试样的摩擦系数随之降低;但是当润滑相含量增加到15%后,润滑相含量的增加对摩擦系数影响不明显。同时,随着润滑相含量增加,试样摩擦磨损形貌更优,表面磨屑、犁沟更少,更有利于润滑膜形成。试样中润滑相(Ag2MoO4-Ag)含量为15%时其摩擦性能最佳。  相似文献   

6.
研究了炭纤维织物/环氧(CF/EP)复合材料与45#钢在环-环端面干摩擦状态下的摩擦磨损特性,考查了制备工艺和MoS2与石墨不同配比等对CF/EP复合材料干摩擦性能的影响,采用扫描电子显微镜观察复合材料及其偶件磨损表面形貌.结果表明:半干法制备的环氧树脂体积分数为40%的CF/EP复合材料的摩擦系数稳定;纯CF/EP复合材料主要表现为粘着磨损特性;MoS2与石墨改性后复合材料摩擦磨损性能明显改善,质量比为1.5∶1的MoS2与石墨改性CF/EP复合材料具有最佳的摩擦磨损性能,其稳态摩擦系数为0.14~0.15,磨损量3.15×10-5 mg/r.  相似文献   

7.
采用无压反应烧结技术制备Ti3SiC2/TiC复合材料,利用XRD-7000型衍射仪、INSTRON-1195型电子万能试验机、JSM-6700F型扫描电子显微镜、HST-100型摩擦磨损试验机对Ti3SiC2/TiC复合材料烧结试样的相组成、抗弯强度、断口显微形貌和载流摩擦磨损性能进行了研究.结果表明:在1550℃下可制备得到均匀致密的Ti3SiC2/TiC复合材料;随着试样中TiC含量的增加,复合材料抗弯强度逐渐增大;当TiC质量分数达到18%左右时,抗弯强度明显增加,摩擦系数趋于稳定,磨损率快速下降;电流强度是Ti3SiC2/TiC复合材料摩擦磨损性能的主要影响因素,随着试验电流强度的增强,摩擦系数和磨损率明显增大;同时在摩擦表面生成一层熔融状氧化膜(非载流:SiO2、TiO2和FeTiO3载流:FeTiO3和Fe2.35Ti0.65O4),主要磨损形式为电弧烧蚀和氧化磨损.  相似文献   

8.
仿生多孔超高分子量聚乙烯的摩擦磨损性能研究   总被引:3,自引:0,他引:3  
模拟天然关节软骨中"多孔可渗透软垫层"的特征,采用模板-滤取工艺制备具有多孔结构的超高分子量聚乙烯(UHMWPE)仿生人工软骨材料,采用改进的四球摩擦磨损试验机研究多孔结构和UHMWPE分子量对试样摩擦磨损性能的影响,利用扫描电子显微镜观察多孔材料的表面形貌并分析其磨损机理.结果表明,多孔结构能够提高UHMWPE试样在牛血清润滑条件下的耐磨性.试样的孔隙率约为27%,UHMWPE分子量的改变对试样的失重和孔隙率影响不大,但能够略微降低多孔UHMWPE试样的磨损量.在干摩擦条件下,多孔试样的磨损量比普通试样高66.9%,在牛血清润滑下的磨损量比普通UHMWPE低46.6%.UHMWPE的多孔结构能够提高UHMWPE试样表面的润滑性能,降低其磨损量.  相似文献   

9.
研究了稀土元素(RE)处理炭纤维表面的最佳添加量和不同炭纤维表面处理对聚四氟乙烯(PTFE)复合材料在干摩擦条件下摩擦磨损性能的影响,并利用扫描电子显微镜对其磨损表面进行观察和分析.结果表明:当稀土元素在表面改性剂中的含量为0.3%时,炭纤维填充聚四氟乙烯复合材料的摩擦磨损性能最佳;在干摩擦条件下,表面处理炭纤维填充聚四氟乙烯复合材料的摩擦系数比未经处理炭纤维填充聚四氟乙烯复合材料的低,且其耐磨性较好;稀土处理使得复合材料的界面强韧性得到明显改善,从而提高了其摩擦磨损性能.  相似文献   

10.
碳纤维增强摩阻材料的摩擦损特性研究   总被引:6,自引:2,他引:4  
利用D-MS摩擦磨损试验机研究了自制的碳纤维增强摩阻材料的碳纤维含量、表面状态、强度及长度对其摩擦磨损性能的影响。结果表明:碳纤维含量对摩阻材料的摩擦磨损性能有显著影响,低含量时主要起减摩作用,高含量时主要起抗犁削作用;经过表面改性的碳纤维与粘结剂结合强度较高,能改善摩阻材料的摩擦磨损性能,高强度碳纤维增强摩擦材料具有较好的摩擦磨损性能;碳纤维长度对摩阻材料的摩擦磨损性能和加工性能具有一定的影响。  相似文献   

11.
仿生微胶囊复合水润滑轴承材料的摩擦性能研究   总被引:1,自引:0,他引:1  
水润滑尾轴承在低速重载的工况下常出现严重磨损的情况.为降低润滑不良造成的尾轴承磨损,本文中通过观察铁犁木表面结构,分析其自润滑机理,设计出仿生微胶囊复合水润滑轴承材料.复合材料以高密度聚乙烯为基底材料,含基础油的仿生微胶囊为添加剂,采用共混的方式加工成型.使用CBZ-1船舶轴系摩擦磨损试验机研究了仿生微胶囊复合材料在不同试验工况下的摩擦性能.通过分析复合材料的磨损量和表面形貌参数,得出复合材料的磨损机理.结果表明:试验工况条件下,仿生微胶囊复合材料能够提升材料的摩擦学性能,其中当仿生微胶囊质量分数为3%时提升效果最明显.该研究为仿生水润滑材料的结构设计以及性能提升等提供试验依据.  相似文献   

12.
玻璃纤维增强MC尼龙复合材料的摩擦磨损性能研究   总被引:9,自引:0,他引:9  
通过碱催化阴离子聚合反应制备玻璃纤维增强单体浇铸尼龙复合材料(GFMCPA),在MM-200型摩擦磨损试验机上研究了在干摩擦和水润滑条件下,不同玻璃纤维含量对尼龙复合材料摩擦磨损特性的影响,并借助扫描电子显微镜观察其磨损表面形貌.结果表明:玻璃纤维含量对尼龙复合材料的摩擦性能具有显著影响;玻璃纤维质量分数达到30%后复合材料具有较好的耐磨性;在水润滑条件下,复合材料的摩擦系数和磨损量较干摩擦时大幅度降低;玻璃纤维含量低的尼龙复合材料的磨损机制主要为粘着磨损和磨粒磨损;玻璃纤维含量高的尼龙复合材料的粘着磨损减少,磨损机制主要表现为磨粒磨损和疲劳磨损.  相似文献   

13.
聚苯硫醚复合材料在柴油润滑状态下的摩擦学性能研究   总被引:1,自引:1,他引:0  
分别以短切碳纤维(SCF)、铜(Cu)、氧化铜(CuO)和硫化铜(CuS)微米颗粒作为填料,通过热压成型制备了系列的聚苯硫醚(PPS)复合材料.利用环-块摩擦磨损试验机,研究了PPS复合材料在柴油润滑状态下的摩擦学性能,结合摩擦表面形貌、转移膜结构和摩擦化学分析,研究了摩擦学机理.结果表明:填充微米颗粒后,PPS复合材料在柴油润滑状态下的摩擦学性能均有不同程度的提高.加入SCF后,PPS表现出最好的耐磨性;Cu和CuS颗粒显著降低PPS的摩擦系数.在此基础上,进一步探究了SCF/Cu、SCF/CuS两组复合填料分别对PPS材料摩擦学性能的影响.研究发现:复合填充SCF和CuS填料后,PPS复合材料的摩擦学性能最佳.SCF和CuS表现出显著的协同效应:SCF提高PPS材料的承载能力和耐磨性;CuS在摩擦界面发生摩擦化学反应,促进具有润滑特性转移膜的形成.  相似文献   

14.
以钛酸四丁酯为前驱体,凹凸棒石(ATP)为载体,分别采用溶胶凝胶法和蒸汽法制备了两种不同形貌的凹凸棒石-二氧化钛(ATP-TiO2)杂化材料,并以质量分数为5%的含量填充超高分子量聚乙烯(UHMWPE). 通过对比相同微动摩擦条件下超高分子量聚乙烯、凹凸棒石及凹凸棒石-二氧化钛杂化填料填充超高分子量聚乙烯复合材料的摩擦学性能,探究了凹凸棒石-二氧化钛杂化材料微观形貌影响复合材料微动磨损性能的机理. 结果表明:杂化材料的耐热性能较凹凸棒石有显著提升;蒸汽法制备ATP-TiO2杂化材料的比表面积更大,在基体中分散更均匀,与基体的界面结合性更好,在摩擦过程中能够有效地承载,并促进转移膜的生成,其改性的复合材料表现出最低的摩擦系数和磨损率.   相似文献   

15.
采用真空热压法制备MoSi2增强镍基合金复合材料,并考察了其在室温下同Si3N4陶瓷球配副时的摩擦磨损性能.结果表明:加入MoSi2增强相可以显著提高镍基合金复合材料的显微硬度及其摩擦磨损性能;当添加MoSi2质量分数为30%时,复合材料的显微硬度最高、磨损率最低;当MoSi2质量分数分别为20%时,复合材料的摩擦系数最小;随着MoSi2含量增加,复合材料的磨损机理逐渐由塑性变形向脆性微断裂转变,其原因在于MoSi2硬质颗粒对镍基合金基体具有明显的弥散强化效应,并能够在摩擦磨损过程中起到有效的承载作用.为了保证镍基合金复合材料的摩擦磨损性能处于最佳状态,MoSi2增强相的最佳含量应控制在30%.  相似文献   

16.
龚国芳  王新 《摩擦学学报》2000,20(5):321-325
在MM-200型磨损试验机上分别对以釜内聚合和熔融机械混合方法制备的高岭土填充超高分子量聚乙烯基复合材料(UHMWPE/Kaolin)在干摩擦条件下与45^#钢对摩时的摩擦磨损性能进行了研究,并用扫描电子显微镜和立体光学显微镜对其磨损表面进行了观察与分析,对材料的磨损机理进行了探讨。结果表明:引入适量的高岭土能明显降低UHMWPE的摩擦系数和磨损率,用釜内聚合方法制备的UHMWPE/Kaolin复  相似文献   

17.
超高分子量聚乙烯(UHMWPE)轴承材料在低速重载工况下常发生严重磨损,通过添加改性填料能够显著提升其摩擦学性能. 凹凸棒土(ATP)作为一种改性填料能够增强基体材料的机械性能进而改善其摩擦特性,但是ATP作为填料往往会因为团聚效应而降低材料的补强效果. 通过对ATP进行表面改性处理可克服团聚效应,实现ATP与基体间的均匀共混. 通过表面化学包覆改性法制备由硅烷偶联剂KH570改性处理的ATP与UHMWPE共混制成复合材料,并与纯UHMWPE材料作对照试验. 利用RTEC摩擦试验机研究复合材料在水润滑条件下摩擦系数随载荷和转速的变化,以及材料填充含量对复合材料在低速重载(v=0.55 m/s、Fz=55 N)工况下磨损性能的影响. 利用傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)与电子万能材料试验机分别对ATP改性效果、熔融结晶行为及复合材料的重要力学性能进行表征测试. 试验结束后,利用表面轮廓仪与激光共聚焦显微镜观察复合材料表面形貌并分析其磨损机理. 结果表明:硅烷偶联剂KH570对ATP的改性效果良好,填充改性ATP能提高材料的邵氏硬度,且材料的拉伸性能随填充含量的提高呈下降趋势;对比纯UHMWP材料,复合材料的摩擦系数更低,适量的ATP填充能改善材料磨损性能,减小体积磨损率;试验中改性ATP质量分数为1%的复合材料其摩擦学性能最优,在低速重载时的摩擦系数及体积磨损率与纯UHMWPE相比分别降低了52.45%和37.58%.   相似文献   

18.
相变微胶囊改性UHMWPE复合材料的摩擦学性能   总被引:2,自引:2,他引:0  
以石蜡为囊芯,蜜胺树脂为高分子囊壁材料,采用原位聚合法制备了相变微胶囊,并将其作为填料添加入超高分子量聚乙烯基体中,制得相变微胶囊改性UHMWPE复合材料.分析了该复合材料的硬度和物相组成,并研究了其在室温,低速和高速试验条件下的摩擦磨损性能.结果表明:微胶囊填料的加入可以起到较好的减摩降磨作用,填料的最适宜添加比例为20%,在低速试验条件下经改性的复合材料摩擦系数较纯UHMWPE降低60%以上,高速试验条件下改性后的复合材料耐磨性较之纯UHMWPE有明显提高,不同试验条件下材料呈现不同的磨损机理.  相似文献   

19.
采用粉末冶金方法制备出了Cu-12.5Ni-5Sn-石墨自润滑复合材料,通过改变石墨的含量来研究该复合材料的力学性能和在不同摩擦试验温度下的摩擦磨损性能,采用SEM和Raman分析磨损表面,进而讨论复合材料的摩擦、磨损和润滑机制. 结果表明:复合材料的硬度和屈服强度随着石墨含量的增加而逐渐降低;温度对不同石墨含量的复合材料的摩擦磨损性能有显著的影响,在室温下,石墨质量分数为1%和3%的石墨复合材料的摩擦系数和磨损率明显小于5%石墨复合材料;在300 ℃下,石墨质量分数为3%时,复合材料的摩擦磨损性能最好;在500 ℃下,石墨质量分数为5%的石墨复合材料的摩擦磨损性能最好. 在室温下,复合材料具有较好自润滑性的主要原因是形成了几乎光滑连续的石墨润滑膜. 在300和500 ℃下,由金属氧化物和石墨组成的混合物润滑膜是复合材料保持自润滑性的主要原因.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号