首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of the band gap of graphene nanoribbons is an important problem for the fabrication of effective radiation detectors and transducers operating in different frequency ranges. The periodic edge-modified zigzag-shaped graphene nanoribbon (GNR) provides two additional parameters for controlling the band gap of these structures, i.e., two GNR arms. The dependence of the band gap E g on these parameters is investigated using the π-electron tight-binding method. For the considered nanoribbons, oscillations of the band gap E g as a function of the nanoribbon width are observed not only in the case of armchair-edge graphene nanoribbons (as for conventional graphene nanoribbons) but also for zigzag GNR edges. It is shown that the change in the band gap E g due to the variation in the length of one GNR arm is several times smaller than that due to the variation in the nanoribbon width, which provides the possibility for a smooth tuning of the band gap in the energy spectrum of the considered graphene nanoribbons.  相似文献   

2.
Considering the eddy current effect of the magnetic metal particles in a high frequency electromagnetic field, we extend the Maxwell-Garnett law by introducing the eddy-effect parameter A which is as functions of the radius, permeability and electric conductivity of the metal particle medium. It is obvious that the computational result agrees with the experiment, which indicates that the extended Maxwell-Garnett law can be used to predict the effective electromagnetic parameters of a dilute metal-insulator composite medium in a high-frequency electromagnetic field.  相似文献   

3.
Peculiar vibrational modes of graphene nanoribbons (GNRs) with topological line defects were presented. We find that phonon dispersion relations of the topological defective GNRs are more similar to those of perfect armchair-edge GNR than to zigzag-edge GNR in spite of their zigzag edge. All vibrational modes at Γ point are assigned in detail by analyzing their eigenvectors and are presented by video. Three types of characteristic vibrational modes, namely, localized vibrational modes in defect sites, edges, and breathing modes, are observed. Five localized vibrational modes near the defect sites are found to be robust against the width of the topological line-defective GNR. The Raman D’ band just originates from one localized mode, 1622 cm-1. The vibrational mode is sensitive to symmetry. The edge modes are related with structural symmetry but not with widths. Two edge modes are asymmetrical and only one is symmetrical. The breathing modes are inversely proportional to the width for wide-defect GNRs, and inversely proportional to the square root of the width for narrow-defect GNRs. The breathing mode frequencies of defective GNRs are slightly higher than those of perfect GNRs. These vibrational modes may be useful in the manipulation of thermal conductance and implementation of single phonon storage.  相似文献   

4.
We investigated the mechanical responses of the nanoindented graphene-nanoribbon (GNR)-resonator using classical molecular dynamics simulations. The nanoindented force in this work was applied to the GNR's local point and then, GNR-resonator's frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the GNR during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The linear elastic regime in low applied force is explicitly separated with the non-linear elastic regime in high applied force. In particular, at the threshold point, a very small change of the nanoindented depth can cause great change in the resonance frequency, and this property can enable the GNR to be applied to electromechanical relay switching devices and the quantum-computer in quantum-mechanical coupling as well as mass detectors, pressure sensors, accelerometers, and alarms.  相似文献   

5.
场线耦合模型的研究是电磁兼容分析和电磁效应评估的重要组成部分。低频时,可以使用基于准TEM波近似的经典场线耦合模型来计算外场激励下的传输线沿线电流电压响应,然而,当入射波频率增加到对应波长与传输线横向尺寸可比拟时,经典模型将产生不可接受的模型误差,因而需要发展高频情况下的场线耦合模型。介绍了国内外多导体传输线高频场线耦合模型的研究进展,详细分析和比较了两个主流分支:TRI模型和TLST模型;之后简要介绍了传输线超理论TLST模型并以算例说明了该模型的准确性和有效性;最后对高频场线耦合模型的研究内容和研究目标进行了总结和展望。  相似文献   

6.
7.
对于场线耦合问题,经典传输线理论不适用于求解高频电磁干扰辐照下传输线负载上的电压和电流响应。针对这一问题,首先介绍了一种基于天线理论和模拟行为建模(ABM)的时域全波建模方法。该方法利用Harrington矩量法将电流积分方程离散并推导得到宏模型时域表达式,然后利用ABM频域功能实现频变参数的傅里叶逆变换和时域卷积计算。利用电路求解器,该建模方法可直接求解任意结构传输线耦合的负载处瞬态响应;与传统全波算法相比,模型一旦建立便可应用于任意入射场和线性/非线性负载的情况,无需重复耗时地求解电流积分方程。该方法可简化全波算法求解过程,提高仿真计算效率,尤其便于在入射场和负载存在不确定参数时进行高效重复抽样计算以获得统计特性。然后以高频电磁干扰耦合有损大地上的双导体传输线为例,通过与数值电磁代码和传统传输线理论方法的求解结果对比,验证了所提宏模型的有效性以及传输线理论在解决场线耦合问题时的局限性。结果表明,基于全波方法构建的宏模型可在时域内高效准确地求解高频电磁干扰辐照下任意形状传输线负载上的瞬态响应。  相似文献   

8.
An analytical solution to the boundary-value problem of an electric field and electrons in a metal-filled half-space is obtained for arbitrary values of the tangential-momentum accommodation coefficient. The frequency of an external electromagnetic field directed tangentially to the surface is allowed to take on complex values. Both the normal and anomalous skin effects are considered. In the latter case, the low-and high-frequency limits are examined.  相似文献   

9.
李骏  张振华  王成志  邓小清  范志强 《物理学报》2013,62(5):56103-056103
石墨烯纳米带 (GNRs) 是一种重要的纳米材料, 碳纳米管可看作是GNRs卷曲而成的无缝圆筒. 利用基于密度泛函理论的第一性原理方法, 系统研究了GNRs卷曲变形到不同几何构型时, 其电子特性, 包括能带结构 (特别是带隙) 、态密度、透射谱的变化规律. 结果表明: 无论是锯齿型GNRs (ZGNRs) 或扶手椅型GNRs (AGNRs), 在其卷曲成管之前, 其电子特性对卷曲形变均不敏感, 这意味着GNRs的电子结构及输运特性有较强地抵抗卷曲变形的能力. 当GNRs 卷曲成管后, ZGNRs和AGNRs表现出完全不同的性质, ZGNRs几乎保持金属性不变或变为准金属; 但AGNRs的电子特性有较大的变化, 出现不同带隙半导体、准金属之间的转变, 这也许密切关系到碳纳米管管口周长方向上的周期性边界条件及量子禁锢的改变. 这些研究对于了解GNRs电子特性的卷曲效应、以及GNRs与碳纳米管电子特性的关系 (结构与特性的关系) 有重要意义. 关键词: 石墨烯纳米带 卷曲效应 电子特性 密度泛函理论  相似文献   

10.
通过模拟计算,分析螺旋线内径和螺距变化对色散和耦合阻抗的影响,优化慢波结构,初步设计了Ku波段螺旋线行波管慢波结构。模拟行波管输入输出结构,得到输入端反射系数小于-19 dB,电压驻波比小于1.24。电子聚焦系统采用周期永磁聚焦,磁场周期为8.5 mm,计算得到磁场峰值为0.17 T。为提高注波互作用效率,采用具有动态速度渐变特性的慢波结构,使得电子注与高频场有足够的互作用时间,从而保证电子不断地将能量交给高频场。运用三维PIC粒子模拟软件分析行波管的注波互作用,得到在12.5~16 GHz频率范围内输出功率大于88.7 W,电子效率大于14.8%,增益大于34.6 dB。  相似文献   

11.
We theoretically study the electron transport properties for two coupled single-walled caxbon nanotube quantum dots connected to metallic electrodes under the irradiation of an external electromagnetic field at low tempera- tures. Using the standaxd nonequilibrium Green's function techniques, we examine the time-averaged transmission coefficient and linear conductance. It is shown that by some numerical examples, the photon-assisted inter-dot coupling causes Fano resonance and the conductance of the system is sensitive to the external field parameters. The transport dependence on the external field parameters may be used to detect the high-frequency microwave irradiation.  相似文献   

12.
The generation of high order harmonics from an inhomogeneous ovderdense plasma target irradiated by an ultrashort intense laser pulse is studied by numerical simulation. During such interaction, ultrafast electron bunches are generated and excite electron plasma oscillations as they pass through the overdense target. These plasma oscillations will emit high-frequency electromagnetic emission by linear mode conversion. Instead of the integer harmonies generation, the emission appears with a broadband and even continuous spectrum corresponding to the electron plasma frequency range of the inhomogeneous plasma density.  相似文献   

13.
Models of the coupling of electromagnetic and gravitational fields have been studied extensively for many years. In this paper,we consider the coupling between the Maxwell field and the Weyl tensor of the gravitational field to study how the wavevector of the electromagnetic wave is affected by a plane gravitational wave. We find that the wavevector depends upon the frequency and direction of polarization of the electromagnetic waves, the parameter that couples the Maxwell field and the Weyl tensor, and the angle between the direction of propagation of the electromagnetic wave and the coordinate axis. The results show that this coupling model can be tested by the detection of high-frequency gravitational waves.  相似文献   

14.
LING-FENG MAO 《Pramana》2013,81(2):309-317
The quantum capacitance, an important parameter in the design of nanoscale devices, is derived for armchair-edge single-layer graphene nanoribbon with semiconducting property. The quantum capacitance oscillations are found and these capacitance oscillations originate from the lateral quantum confinement in graphene nanoribbon. Detailed studies of the capacitance oscillations demonstrate that the local channel electrostatic potential at the capacitance peak, the height and the number of the capacitance peak strongly depend on the width, especially a few nanometres, of the armchair-edge graphene nanoribbon. It implies that the capacitance oscillations observed in the experiments can be utilized to measure the width of graphene nanoribbon. The results also show that the capacitance oscillations are not seen when the width is larger than 30 nm.  相似文献   

15.
This paper aims at investigating the resonance frequencies and stability of a long Graphene Nano-Ribbon (GNR) carrying electric current. The governing equation of motion is obtained based on the Euler-Bernoulli beam model along with Hamilton's principle. The transverse force distribution on the GNR due to the interaction of the electric current with its own magnetic field is determined by the Biot-Savart and Lorentz force laws. Using Galerkin's method, the governing equation is solved and the effect of current strength and dimensions of the GNR on the stability and resonance frequencies are investigated.  相似文献   

16.
The quantum effects on the magnetization due to the ponderomotive force are investigated in cold quantum plasmas. It is shown that the ponderomotive force of the electromagnetic wave induces the magnetization and cyclotron motion in quantum plasmas. We also show that the magnetic field would not be induced without the quantum effects in plasmas. It is also found that the quantum effect enhances the cyclotron frequency due to the ponderomotive force related to the time variation of the field intensity. In addition, it is shown that the magnetization diminishes with an increase of the frequency of the electromagnetic field.  相似文献   

17.
Superradiative instability developing in a cluster of electrons moving in an undulator field or in an electromagnetic pump wave field is considered. The instability is shown to have no threshold and the instability increment is estimated. The development of instability results in the bunching of particles in the cluster and their coherent radiation at frequencies nearly equal to the frequencies of individual radiation (scattering) of particles. When the translational velocity of the cluster is close to the velocity of light, the frequency of the high-frequency (HF) component of radiation (along the translational motion) may be much higher than the oscillation frequency of particles.  相似文献   

18.
在超导磁约束系统中,超导磁体与射频场、磁场、声场、电场等复合场的兼容耦合是系统稳定运行的关键。探讨了在13.56 MHz频率下的Shoji型天线产生的高频电磁波对超导磁体的影响,高频电磁波会在超导磁体表面产生涡流损耗,进而产生功率损耗并生成热量,导致超导磁体失超。为避免失超现象的发生,在超导磁体室温孔内采用金属屏蔽层进行防护。利用COMSOL软件对整个电磁-射频非线性耦合场进行建模仿真分析,完成了屏蔽层结构的优化选择。基于计算结果,分析讨论了屏蔽层厚度和高度变化对超导磁体上涡流损耗功率的变化影响。通过对超导磁体涡流损耗功率随屏蔽层参数变化进行拟合,最终得到了优化后的屏蔽层参数。  相似文献   

19.
曾美玲  蔡金良  易早  秦风  邝向军 《强激光与粒子束》2021,33(4):043004-1-043004-10
核电磁脉冲和高功率微波等强电磁脉冲易造成电子设备功能失效甚至损毁,在实际工程实施中用金属腔体对电子设备进行屏蔽是常用的强电磁脉冲抑制手段。基于电磁仿真计算,对含矩形孔缝金属腔体的强电磁脉冲耦合特性进行了系统研究,阐述了孔缝宽长比、腔体尺寸等因素对多种不同类型强电磁脉冲(核电磁脉冲、宽带高功率微波、窄带高功率微波)作用下腔体内耦合场的影响;并以此为基础,重点分析了强电磁脉冲与含孔缝金属腔体之间的作用机制。研究结果表明:不同类型强电磁脉冲耦合信号差异明显,金属腔体对强电磁脉冲的响应是腔体谐振模式、孔缝谐振频率与强电磁脉冲共同作用的结果;当腔体谐振模式、孔缝谐振频率在强电磁脉冲的带内时,腔体内部的耦合场会出现增强效应;特别地,腔体与孔缝间的相互作用还可造成腔体与缝隙的谐振频率发生偏移。因此,在为电子设备设计金属屏蔽外壳时,应基于不同强电磁脉冲的频带范围,对腔体与孔缝的尺寸进行综合设计,抑制腔体、孔缝谐振及谐振频率偏移,提升其强电磁脉冲防护性能。  相似文献   

20.
We calculate the photoconductance of two-dimensional ballistic microstructures subject to a high-frequency electromagnetic field. First, we study a simple quantum point contact. Absorption of photons is due to electronic transitions between different modes. A transition between a propagating and a nonpropagating mode results effectively in a backscattering process, and gives a negative or positive contribution to the current, depending on the gate voltage; the total quantized conductance acquires an additional, quite pronounced step-structure. Then, we demonstrate a new effect where the electron-photon interaction in a structure of slightly more complex geometry plays the same role as impurity scattering does in a “dirty” system. All relevant photons of the external electromagnetic field are coherent and spatial interference effects in electron-photon scattering become possible in spite of the inelastic nature of the collisions. These interference effects can be controlled by the gate voltage or the frequency of the electromagnetic field. As an illustration we calculate the photoconductance of a double point-contact geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号