首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel partitioning collection device comprising a glass cartridge packed with poly(dimethylsiloxane)‐coated macroporous silica particles was developed for the precise quantification of polycyclic aromatic hydrocarbons in air. The analyte collection and elution performances achieved using different amounts of poly(dimethylsiloxane) coating were quantitatively evaluated. The sample retention power increased with increasing the coating, and more than 250 L of air could be collected without analyte breakthrough at a sampling temperature of 35°C. During the air collection, the moisture in the air was not retained on the particles due to the hydrophobic surface of the sorbent. A complete and rapid elution of the collected analytes from the device was accomplished by the passage of only 10 mL of acetone with ultrasonication for 1 min. The proposed method was successfully applied for the determination of airborne polycyclic aromatic hydrocarbons in tunnel air.  相似文献   

2.
Interfacial tensions γ were measured for mixtures of poly(methylphenylsiloxane) (4 kg/mol) and poly(dimethylsiloxane) (24 kg/mol) in the absence and in the presence of small amounts of the random copolymer poly(dimethylsiloxane-ran-methylphenylsiloxane) (89 mol-% of dimethylsiloxane units, 28 kg/mol) from 25 to 110°C. Approximately 1 wt.-% of the copolymer additive suffices to reduce γ from ca. 2.2 to 1.6 mN/m. The time dependence of the apparent γ value in the course of the attainment of equilibria also indicates surface acivity. The hypothesis is formulated that the efficiency of the random copolymer for a reduction of γ is bound to the condition that it is only sparingly soluble in both blend components.  相似文献   

3.
Large melting point depressions for organic nanocrystals, in comparison with those of the bulk, were observed in an associative polymer: telechelic, pyrene‐labeled poly(dimethylsiloxane) (Py‐PDMS‐Py). Nanocrystals formed within nanoaggregates of pyrenyl units that were immiscible in poly(dimethylsiloxane). For 5 and 7 kg/mol Py‐PDMS‐Py, physical gels resulted, with melting points exceeding 40 °C and with small‐angle X‐ray scattering peaks indicating that the crystals were nanoconfined, were 2–3 nm long, and contained roughly 18–30 pyrenyl dye end units. In contrast, 30 kg/mol Py‐PDMS‐PY was not a gel and exhibited no scattering peak at room temperature; however, after 12 h of annealing at ?5 °C, multiple melting peaks were present at 5–30 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3470–3475, 2004  相似文献   

4.
Allyl free-radical intermediates are detected by ultraviolet absorption at 255 mu in poly(vinyl chloride) irradiated at ?196°C and stored at 25°C. In vacuum at 25°C, allyl radicals are converted into polyenyl free radicals and polyenes. From the nature of allyl radical decay in vacuum, radical chain transfer between polyenyl radicals and poly(vinyl chloride) is inferred. Allyl and polyenyl free radicals are scavenged by oxygen on post-irradiation storage in air.  相似文献   

5.
Although the technique of gas chromatography has been widely used to study polymer properties and to obtain information on polymer solution thermodynamics, few workers have extended their results beyond infinite dilution of solvent, Finite-concentration gas chromatography has been used to study several poly(dimethylsiloxane)-solvent systems at 25°C. The results are in good agreement with those obtained by traditional vapor sorption methods. A comparison of the various available techniques has been made, and the advantages and disadvantages of each are discussed.  相似文献   

6.
 Submicron-sized, comparatively monodisperse poly (methyl methacrylate) particles were produced by dispersion polymerization of methyl methacrylate with a poly(dimethylsiloxane)-based azoinitiator in supercritical carbon dioxide at 30 MPa for 24 h at 65 °C. The initiator operated not only as a radical initiator but also as a colloidal stabilizer, and was named an “inistab”. Received: 13 February 2001 Accepted: 20 June 2001  相似文献   

7.
We report ultrasonic attenuation and velocity measurements on poly(dimethylsiloxane) (PDMS), poly(phenylmethyl siloxane) (PPMS), and copolymer poly(dimethyl phenylmethyl siloxane) in the temperature range of 10–50°C and frequency 0.3–45 MHz. The present data complement previously reported Brillouin spectra at hypersonic frequencies. Whereas the ultrasonic velocity u0 is virtually independent of frequency, the ultrasonic absorption exhibits strong dispersion which can be ascribed to the viscoelastic normal mode relaxation. The ultrasonic attenuation data for PPMS at low temperatures display an additional relaxation process related to localized segmental motion. This mode is also responsible for the relatively large dispersion of the sound velocity and attenuation in the gigahertz frequency range accessible to the Brillouin scattering experiment. The extended information, which can be extracted by studying hypersonic dispersion, is discussed in detail.  相似文献   

8.
《Tetrahedron》2014,70(21):3422-3429
The relative cleavage of an alcohol from a panel of amino esters and amino carbonates via intramolecular cyclization was examined as a mechanism for substrate release. Thermal stability at 37 °C was observed only for the seven-membered ring progenitors. Applicability of the approach was illustrated by δ-lactam formation within a poly(dimethylsiloxane) microchannel for release of a captured fluorescent probe.  相似文献   

9.
Transparent films of titania/poly(dimethylsiloxane) (PDMS) hybrids were prepared by the solvent evaporation from the precursor solution prepared by the co-hydrolysis and co-condensation of titanium tetraisopropoxide and a methoxy-functionalized PDMS. The hybrid films were flexible and had high homogeneity of the composition. The organic groups of PDMS were decomposed at 400°C in air to form porous films. Though the heated films were rather brittle compared to the as-synthesized films, they were still transparent and homogeneous. The BET surface areas of the films after the heat treatment at 400°C were over 300 m2/g, while the as-synthesized hybrid films were non porous. According to the BDDT classification, the nitrogen adsorption/desorption isotherms of the calcined films were Type I, showing that the films were microporous. The titania domains were still amorphous after the heat treatment at 400°C and transformed to anatase after the heat treatment at 1,000°C.  相似文献   

10.
Novel poly(enonsulfides) were prepared with inherent viscosities as high as 1.35 dL/g by nucleophilic addition of various aromatic dithiols to 1,1′-(1,3- or 1,4-phenylene)bis(3-phenyl-2-propyn-1-one) in m-cresol at 25–40°C. A tough clear yellow film with a tensile strength of 11,300 psi and a tensile modulus of 466,000 psi at 25°C was cast from a chloroform solution of the polymer prepared from 1,3-dithiobenzene and 1,1′-(1,4-phenylene)bis(3-phenyl-2-propyn-1-one). The poly(enonsulfides) exhibited Tg's as high as 180°C and weight losses of approximately 10% at 331°C in air. The synthesis and characterization of several poly(enonsulfides) are discussed.  相似文献   

11.
The pressure–volume–temperature (PVT) properties of three commercial samples of poly(dimethylsiloxane) are studied experimentally and theoretically in the temperature range 25–150°C and for pressure to ∼ 3 kbar. The Tait equation is employed to represent the data at elevated pressure. Isothermal compressibilities are computed for the three samples. The melt data are analyzed in terms of the Simha–Somcynsky hole theory, and scaling parameters of pressure, volume, and temperature are obtained. Satisfactory agreement between theory and experiment is found over the entire range of experimental pressures. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 841–850, 1998  相似文献   

12.
Benzoxazine monomer (Ba) was blended with soluble poly(imide‐siloxane)s in various weight ratios. The soluble poly(imide‐siloxane)s with and without pendent phenolic groups were prepared from the reaction of 2,2′‐bis(3,4‐dicarboxylphenyl)hexafluoropropane dianhydride with α,ω‐bis(aminopropyl)dimethylsiloxane oligomer (PDMS; molecular weight = 5000) and 3,3′‐dihydroxybenzidine (with OH group) or 4,4′‐diaminodiphenyl ether (without OH group). The onset and maximum of the exotherm due to the ring‐opening polymerization for the pristine Ba appeared on differential scanning calorimetry curves around 200 and 240 °C, respectively. In the presence of poly(imide‐siloxane)s, the exothermic temperatures were lowered: the onset to 130–140 °C and the maximum to 210–220 °C. The exotherm due to the benzoxazine polymerization disappeared after curing at 240 °C for 1 h. Viscoelastic measurements of the cured blends containing poly(imide‐siloxane) with OH functionality showed two glass‐transition temperatures (Tg's), at a low temperature around ?55 °C and at a high temperature around 250–300 °C, displaying phase separation between PDMS and the combined phase consisting of polyimide and polybenzoxazine (PBa) components due to the formation of AB‐crosslinked polymer. For the blends containing poly(imide‐siloxane) without OH functionalities, however, in addition to the Tg due to PDMS, two Tg's were observed in high‐temperature ranges, 230–260 and 300–350 °C, indicating further phase separation between the polyimide and PBa components due to the formation of semi‐interpenetrating networks. In both cases, Tg increased with increasing poly(imide‐siloxane) content. Tensile measurements showed that the toughness of PBa was enhanced by the addition of poly(imide‐siloxane). Thermogravimetric analysis showed that the thermal stability of PBa also was enhanced by the addition of poly(imide‐siloxane). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2633–2641, 2001  相似文献   

13.
14.
A high‐fidelity model of kinetic and equilibrium sorption and diffusion is developed and exercised. The gas‐diffusion model is coupled with a triple‐sorption mechanism: Henry’s law absorption, Langmuir adsorption, and pooling or clustering of molecules at higher partial pressures. Sorption experiments are conducted and span a range of relative humidities (0–95 %) and temperatures (30–60 °C). Kinetic and equilibrium sorption properties and effective diffusivity are determined by minimizing the absolute difference between measured and modeled uptakes. Uncertainty quantification and sensitivity analysis methods are described and exercised herein to demonstrate the capability of this modeling approach. Water uptake in silica‐filled and unfilled poly(dimethylsiloxane) networks is investigated; however, the model is versatile enough to be used with a wide range of materials and vapors.  相似文献   

15.
Solid-phase microextraction (SPME) was optimised for the qualitative determination of the volatile flavour compounds responsible for the aroma of Greek Boutari wine. Several factors influencing the equilibrium of the aroma compounds between the sample and the SPME fiber were taken into account, including the extraction time, the extraction temperature, the sampling mode (headspace and direct immersion or liquid SPME), and the presence of salt. Four different SPME fibers were used in this study. namely poly(dimethylsiloxane) (PDMS), poly(acrylate), carbowax-divinylbenzene and divinylbenzene-carboxen on poly(dimethylsiloxane). The best results were obtained using the PDMS fiber during headspace extraction at 25 degrees C for 30 min after saturating the samples with salt. The optimised SPME method was then applied to investigate the qualitative aroma composition of three other Greek wines, namely Zitsa, Limnos and Filoni.  相似文献   

16.
A procedure for the rapid determination of organic and inorganic carbon in oil shale samples is proposed. Oil shale samples are decomposed in an oxygen stream at three different temperatures (450°C, 550°C, 900°C). The resulting CO2 is determined after absorption in 0.02 M NaOH in a relative conductometric detection unit. Temperature. differentiated carbon analysis was used to establish the decomposition temperatures of the organic material (450°C) and the inorganic fractions (550°C and 900°C). The method was tested for samples weighing 2–4 mg. Oil shales with organic carbon contents of 8–20% were determined with good reproducibility (r.s.d. 0.4–1.3%). The accuracy was tested with a standard oil shale sample. One determination requires 8 min.  相似文献   

17.
An interpolymer complex was prepared by mixing aqueous solutions of poly(methacrylic acid) and hydroxyethylcellulose (molar substitution 2.5) and studied by using viscometric method. The hydrogen bonding is primarily involved in these complexations, but the hydrophobic interaction plays also an important role. The complex composition is not changing with the solvents used and is stable in the temperature range 25 °C - 65 °C.  相似文献   

18.
Self‐supported translucent films constituted of poly(n‐octylsilsesquioxane) or poly(n‐dodecylsilsesquioxane) were obtained from the hydrolysis and condensation of n‐octyltriethoxysilane (OTES) or n‐dodecyltriethoxysilane (DTES), respectively. Dense films were obtained in the absence of organic solvents, with dibutyltin diacetate as catalyst. These films exhibited good optical transparency and thermal stability. The incorporation of oligomeric dimethylsiloxane units (DMe,Me) in these materials, derived from silanol‐terminated poly(dimethylsiloxane) (PDMS) or 1,1,3,3‐tetramethyl‐1,3‐diethoxydisiloxane (TMDES), was carried out during the hydrolysis and condensation of OTES and DTES and was confirmed by solid‐state 29Si NMR. Poly(n‐octylsilsesquioxane) showed a glass‐transition temperature at ?65 °C, due to the increase in the free volume, promoted by the bulky n‐octyl groups. The differential scanning calorimetric (DSC) curves of the polymer derived from DTES were characterized by first‐order transitions at temperatures ranging from ?15.8 to ?0.7 °C. Further studies of these networks by low‐temperature XRD evidenced narrowing of the diffraction halos suggesting a partial order–disorder transition for these materials at lower temperatures. Good thermal stability up to 350 °C and the solvent‐free production process make these polymers potential candidates for the development of self‐supported hydrophobic protective coatings. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1220–1229, 2010  相似文献   

19.
Dihydridocarbonyltris(triphenylphosphine)ruthenium catalyzes the regiospecific anti‐Markovnikov addition of an ortho C? H bond of benzophenone across the C? C double bonds of α,ω‐bis(trimethylsilyloxy)copoly(dimethylsiloxane/vinylmethylsiloxane) (99:1), α,ω‐bis(vinyldimethylsilyloxy)poly(dimethylsiloxane), and 1,3‐divinyltetramethyldisiloxane to yield α,ω‐bis(trimethylsilyloxy)copoly[dimethylsiloxane/2‐(2′‐benzophenonyl)ethylmethylsiloxane]), α,ω‐bis[2‐(2′‐benzophenonyl)ethyldimethylsilyloxy]poly(dimethylsiloxane), and 1,3‐bis[2‐(2′‐benzophenonyl)ethyl]tetramethyldisiloxane, respectively. These materials have been characterized with 1H, 13C, and 29Si NMR and IR spectroscopy. Their molecular weight distributions have been determined by gel permeation chromatography. The thermal stability of the polymers has been measured by thermogravimetric analysis, and their glass‐transition temperatures (Tg's) have been determined by differential scanning calorimetry. The molecular weight distribution, thermal stability, and Tg's of the modified polysiloxanes are similar to those of the precursor polymers. The molecular weights of these materials can be significantly increased via heating to 300 °C for 1 h. This may be due to crosslinking, by pyrocondensation, of pendant anthracene groups, which are produced by the pyrolysis of the attached ortho‐alkyl benzophenones. UV spectroscopy of the pyrolysate of 1,3‐bis[2‐(2′‐benzophenonyl)ethyl]tetramethyldisiloxane has confirmed the presence of pendant anthracene groups. Thermal crosslinking by the pyrocondensation of pendant anthracene groups has been verified by the pyrolysis of α,ω‐bis(trimethylsilyloxy)copoly[dimethylsiloxane/2‐(9′‐anthracenyl)ethylmethylsiloxane] (97:3). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5514–5522, 2004  相似文献   

20.
The gas permeation characteristics of poly(silamine) membrane, which consists of alternating 3,3-dimethyl-3-silapentane and N,N′-diethylethylenediamine units in the main chain, were investigated. Though poly(silamine) shows high flexibility (glass transition temperature of −88°C), the gas permeabilities were much lower than those of other rubbery polymers such as poly(dimethylsiloxane) and natural rubber. The activation energies of diffusion in poly(silamine) were much higher than that of natural rubber. On the basis of these results, we propose a model such that the interaction between the Si atom and gas molecules (O2 and N2) prevents the free diffusion of the gas molecule in the poly(silamine) membrane. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号