首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methyl alpha- and beta-glycosides of N-acetylneuraminic acid (Neu5Ac) and N-acetyl-3 beta-hydroxyneuraminic acid (Neu5Ac beta 3OH) (1-4) were prepared to evaluate their calcium-binding ability. (Methyl alpha-glucopyranosidonyl) alpha- and beta-, and 4-methylumbelliferyl alpha-glycosides of Neu5Ac and Neu5Ac beta 3OH (5-10) were also synthesized for the comparison of chemical and enzymatic stabilities, respectively. Methyl beta-glycosides of Neu5Ac and Neu5Ac beta 3OH, 3 and 4, respectively, showed intense calcium-binding abilities, while no such ability was observed in the corresponding alpha-glycosides, 1 and 2. The Neu5Ac beta 3OH glycosides, 6, 8, and 10, showed much stronger resistance to acidic hydrolysis and sialidase digestion than the corresponding Neu5Ac glycosides, 5, 7, and 9.  相似文献   

2.
A method for analysing sialyl oligosaccharides from bovine colostrum using high-performance liquid chromatography-electrospray ionisation-mass spectrometry (HPLC-ESI-MS) is described. Under positive ionisation mode, mass spectra of alpha2-3 and alpha2-6 linkages were different, and the former produced a prominent B2 (or B3 in disialyl lactose) mass fragment. This fragment was absent from mass spectra with alpha2-6 linkages. Two sialyl oligosaccharides, which have not been reported previously, were tentatively identified. One comprises a N-acetyl neuraminic acid (Neu5Ac), two hexoses (Hex), and one N-acetyl hexosamine (HexNAc) residue ((Neu5Ac)1 (Hex)2 (HexNAc)1), and the other comprises one Neu5Ac and one Hex residue ((Neu5Ac)1(Hex)1).  相似文献   

3.
ABSTRACT

Acid hydrolysis of colominic acid, an α-(2→8)-linked oligomer of sialic acid, yielded Neu5Ac α-(2→8) Neu5Ac (di-Neu5Ac) 2 as one of the products. Starting from this disaccharide, it was possible to prepare two potential di-Neu5Ac donors, 5 and 8, as their corresponding 2-chloro derivatives. Subsequent reaction of the donor 8 with methanol as a simple acceptor led to the α- and β-methyl Neu5Ac α-(2→8) Neu5Ac glycosides.  相似文献   

4.
Human lung epithelial cells natively offer terminal N‐acetylneuraminic acid (Neu5Ac) α(2→6)‐linked to galactose (Gal) as binding sites for influenza virus hemagglutinin. N‐Glycolylneuraminic acid (Neu5Gc) in place of Neu5Ac is known to affect hemagglutinin binding in other species. Not normally generated by humans, Neu5Gc may find its way to human cells from dietary sources. To compare their influence in influenza virus infection, six trisaccharides with Neu5Ac or Neu5Gc α(2→6) linked to Gal and with different reducing end sugar units were prepared using one‐pot assembly and divergent transformation. The sugar assembly made use of an N‐phthaloyl‐protected sialyl imidate for chemoselective activation and α‐stereoselective coupling with a thiogalactoside. Assessment of cytopathic effect showed that the Neu5Gc‐capped trisaccharides inhibited the viral infection better than their Neu5Ac counterparts.  相似文献   

5.
A series of isotopically labeled natural substrate analogues (phenyl 5-N-acetyl-α-d-neuraminyl-(2→3)-β-d-galactopyranosyl-(1→4)-1-thio-β-d-glucopyranoside; Neu5Acα2,3LacβSPh, and the corresponding 2→6 isomer) were prepared chemoenzymatically in order to characterize, by use of multiple kinetic isotope effect (KIE) measurements, the glycosylation transition states for Vibrio cholerae sialidase-catalyzed hydrolysis reactions. The derived KIEs for Neu5Acα2,3LacβSPh for the ring oxygen ((18)V/K), leaving group oxygen ((18)V/K), C3-S deuterium ((D)V/K(S)) and C3-R deuterium ((D)V/K(R)) are 1.029 ± 0.002, 0.983 ± 0.001, 1.034 ± 0.002, and 1.043 ± 0.002, respectively. In addition, the KIEs for Neu5Acα2,6βSPh for C3-S deuterium ((D)V/K(S)) and C3-R deuterium ((D)V/K(R)) are 1.021 ± 0.001 and 1.049 ± 0.001, respectively. The glycosylation transition state structures for both Neu5Acα2,3LacβSPh and Neu5Acα2,6LacβSPh were modeled computationally using the experimental KIE values as goodness of fit criteria. Both transition states are late with largely cleaved glycosidic bonds coupled to pyranosyl ring flattening ((4)H(5) half-chair conformation) with little or no nucleophilic involvement of the enzymatic tyrosine residue. Notably, the transition state for the catalyzed hydrolysis of Neu5Acα2,6βSPh appears to incorporate a lesser degree of general-acid catalysis, relative to the 2,3-isomer.  相似文献   

6.
F Y Che  X X Shao  K Y Wang  Q C Xia 《Electrophoresis》1999,20(14):2930-2937
A simple and highly sensitive capillary electrophoresis (CE) method for determining the content of N-acetylneuraminic acid (Neu5Ac) in glycoproteins was developed. Neu5Ac was derivatized with 2-aminoacridone (AMAC) by reductive amination, and the AMAC-Neu5Ac adduct could be readily separated from the other 11 AMAC-derivatized neutral and acidic monosaccharides usually present in glycoproteins by CE in a 0.3 mol/L borate buffer, pH 10.5, and detected at 260 nm. The derivatization of Neu5Ac was achieved at 55 degrees C for 4 h. AMAC-Neu5Ac was stable at 20 degrees C in the dark for at least 12 h while at room temperature it spontaneously converted into another substance with a lower electrophoretic mobility, which was identified as decarboxylated AMAC-Neu5Ac by high performance liquid chromatography - ion trap mass spectrometry (HPLC-ITMS). Concentration and mass of Neu5Ac as low as 1 micromol/L and 35 fmol could be detected. The linear correlation coefficient between the ratio of peak area to migration time of AMAC-Neu5Ac and the concentration of Neu5Ac ranging from 10 to 120 micromol/L was 0.9978 (n=8). This method was successfully applied to the analysis of sialic acid in human urinary trypsin inhibitor (hu-UTI), bovine alpha1-acid glycoprotein (alpha1-AGP) and recombinant human erythropoietin (rhu-EPO). By combination of CE and HPLC-ITMS we found that N-glycolylneuraminic acid (Neu5Gc) was present in bovine alpha1-AGP in addition to Neu5Ac, with a quantity comparable to that of the latter.  相似文献   

7.
The selective binding between avian and human influenza A viral hemagglutinins (HA) subtype H3 and Neu5Acα2-3 and α2-6Gal (avian α2-3, human α2-6) is qualitatively rationalized by the fragment molecular orbital (FMO) method. We suggest a general model of analyzing protein-ligand interactions based on the electrostatic, polarization, dispersion, and desolvation components obtained from quantum-mechanical calculations at the MP2/6-31G(d) level with the polarizable continuum model of solvation. The favorable avian H3 (A/duck/Ukraine/1963)-avian α2-3 binding arises from the hydrophilic interaction between Gal-4 OH and side-chain NH(2)CO on Gln226, which is supported by the intermolecular hydrogen-bond network to the 1-COO group on Neu5Ac moiety. A substitution of Gln226Leu in the avian H3 HA1 domain increases the binding affinity to human α2-6 due to the Leu226···human α2-6 dispersion with a small entropic penalty during the complex formation. The remarkable human H3 (A/Aichi/2/1968)-human α2-6 binding is not governed by the Ser228-OH···OH-9 Neu5Ac hydrogen bond. These fragment-based chemical aspects can help design monovalent inhibitors of the influenza viral HA-sialoside binding and the simulation studies on the viral HAs-human α2-6 binding.  相似文献   

8.
The short syntheses of each of the mono-acetates of N-acetyl-D-neuraminic acid are reported. These are important molecules for studying the mechanism and function of enzymes which utilise Neu5Ac as a substrate. However, until now these molecules were not available as pure compounds and instead had to be studied as mixtures. Neu4,5Ac(2) and Neu5,8Ac(2) were synthesised from a common precursor in 2 and 4 steps respectively, while Neu2,4Ac(2) and Neu5,7Ac(2) were synthesised in 3 and 4 steps respectively from another common precursor. Both precursors could be easily prepared in 3 steps from Neu5Ac itself. Importantly, no scrambling of the anomeric stereochemistry was detected throughout the course of these syntheses.  相似文献   

9.
Novel sialosyl donors, 4-pentenoic acid ester of N-acetylneuraminic acids (Neu5Ac) and 4-pentenyl glycoside of Neu5Ac were successfully prepared from the corresponding per-O-acetylated 2-hydroxy and 2-chloro derivatives of Neu5Ac, respectively and applied to the synthesis of O-sialosides.  相似文献   

10.
Sialyldisaccharides are significant terminal components of glycoconjugates and their negative charge and conformation are extensively utilized in molecular recognition processes. The conformation and flexibility of four biologically important sialyldisaccharides [Neu5Acα(2-3)Gal, Neu5Acα(2-6)Gal, Neu5Acα(2-8)Neu5Ac and Neu5Acα(2-9)Neu5Ac] are studied using Molecular Dynamics simulations of 20 ns duration to deduce the conformational preferences of the sialyldisaccharides and the interactions which stabilize the conformations. This study clearly describes the possible conformational models of sialyldisaccharides deduced from 20 ns Molecular Dynamics simulations and our results confirm the role of water in the structural stabilization of sialyldisaccharides. An extensive analysis on the sialyldisaccharide structures available in PDB also confirms the conformational regions found by experiments are detected in MD simulations of 20 ns duration. The three dimensional structural coordinates for all the MD derived sialyldisaccharide conformations are deposited in the 3DSDSCAR database and these conformational models will be useful for glycobiologists and biotechnologists to understand the biological functions of sialic acid containing glycoconjugates.  相似文献   

11.
2-(Perfluorohexyl)ethoxymethyl chloride was prepared as a novel fluorous protecting reagent. Neu5Ac aldolase-catalyzed chemoenzymatic transformation of N-acetyl-D-mannosamine to Neu5Ac derivatives was achieved successfully by using the fluorous reagent not only for hydroxy group protection but also for fluorous tagging. This chemoenzymatic method was applied to the synthesis of 2-deoxy-2,3-didehydrosialic acid 1 known as a potent sialidase inhibitor.  相似文献   

12.
The stable structures of α‐N‐acetyl‐D‐neuraminic acid (Neu5Acα) in the gas phase were studied at the B3LYP level of theory using 6‐31G(d,p) and 6‐31++G(d,p) basis sets. They are classified into five types according to the patterns of the intramolecular hydrogen bond formations. One of the stable structures had intramolecular hydrogen bond network of O9HO9 … O8HO8 … O?C1‐O1HO1 and O7HO7…O?CHN‐C5 similar to the crystal structure of Neu5Ac‐α‐methyl glycoside methyl ester. The stable structures of Neu5Acα are reasonable for the following sialooligosaccharide ligand studies with respect to the relationship between OH group orientations and intramolecular hydrogen bond formations. The barrier heights for isomerizations between the stable structures were computed to be 2.8 to 6.7 kcal/mol at the B3LYP/6‐31++G(d,p)//B3LYP/6‐31G(d,p) level, which are basic factors for the conformational behavior of Neu5Acα before its interactions with receptors. We also calculated Neu5Acα–4 or 5‐water complexes to take account of the solvent effect on the intramolecular hydrogen bonds in the stable structures. Consequently, the structures of Neu5Acα in the complexes are similar to each other, which is consistent with the known NMR data. Thus, the optimum Neu5Acα‐water complexes are some of the reasonable pseudohydrous Neu5Acα.  相似文献   

13.
This paper presents a short synthesis of new analogs of N-acetylneuraminic acid (Neu5Ac) varied structurally at C-5. The synthetic strategy includes indium-mediated coupling reactions between ethyl 2-(bromomethyl)acrylate and N-derivatized mannosamines, and the ozonolysis of the resulting enoates. The main advantage of this indium-mediated allylation for the synthesis of neuraminic acids comes from the efficient, stereoselective C-C bond formation, which affords predominantly the correct diastereomer having a threo relationship between the newly generated hydroxyl group and the C-2 amide group of mannosamine. By this approach, Neu5Boc (4a), Neu5Gly (4b), Neu5(6-NHCbz)hexanoyl (4c), and Neu5(1-naphthyl)acetyl (4d) were prepared in three steps (overall approximately 50%). In addition, several N-substituted neuraminic acids were synthesized by N-acylation of the amino functionality of neuraminic acid (5b), which was obtained by deprotecting the N-Boc group of Neu5Boc (4a). These analogs include Neu5BrAc (6a), Neu5acryloyl (6b), Neu5benzoyl (6c) and Neu5benzoyl-4-benzoyl (6d). The N-acylation method is especially suited for synthesis of neuraminic acids bearing substituents that can not tolerate ozonolysis or that are unstable (photo)chemically. Finally, we illustrate the utility of synthetic neuraminic acids by converting 4c to a derivative of 2-deoxy-2,3-didehydroneuraminic acid (8c), a precursor to inhibitors of neuraminidases.  相似文献   

14.
A simple capillary zone electrophoresis (CZE) method for the determination of the content of the major sialic acid form N-acetylneuraminic acid (Neu5Ac) in glycoproteins was established. The present method utilizes a simplified hydrolysis-purification procedure consisting of mild acid hydrolysis (25 mM trifluoroacetic acid for 2h at 80 degrees C) to release Neu5Ac and ultrafiltration on Centricon-3 membrane to remove the obtained asialoglycoproteins and other macromolecules present in biologic samples. Derivatization with benzoic anhydride at 80 degrees C for 20 min resulted in complete conversion of Neu5Ac to per-O-benzoylated Neu5Ac. CZE analysis was performed using the operating buffer 25mM phosphate, pH 3.5, containing 50% (v/v) acetonitrile as organic modifier at 30 kV, and detection of the per-O-benzoylated Neu5Ac at 231 nm. The method showed excellent repeatability (RDS<1.98%) and a linearity range from 5 microg/mL to 5mg/mL with a detection limit of 2 microM. Application of the method to microanalysis of human alpha(1)-acid glycoprotein and blood serum samples showed excellent agreement with previously published values, suggesting a high precision for the developed CZE method.  相似文献   

15.
To explore new inhibitors of the sialidase of human parainfluenza virus type 1 (hPIV-1), a series of novel Neu5Ac2en derivatives were synthesized. Thus, 8,9-O-isopropylidene-4-O-2-propynyl-Neu5Ac2en methyl ester 8 was subjected to a Sonogashira coupling reaction with a variety of heteroaryl halides to produce a series of 4-O-(3-heteroaryl-2-propynyl) compound 9. Treatment of 9 with 80% acetic acid followed by alkaline hydrolysis afforded deprotected Neu5Ac2en compounds. The 4-epi-analogs of this type of Neu5Ac2en were synthesized in a similar manner. Compound 5d showed the most potent inhibitory activity (IC50 1.2 μM) against hPIV-1 sialidase.  相似文献   

16.
N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the dominant sialic acids (Sia) in mammals usually found in the non-reducing terminal of oligosaccharide side chains in glycoproteins and glycolipids. Their expression and distribution pattern have been correlated both with the malignant phenotype and tumor grade of human cancers. The aim of the present study was to determine by reversed-phase HPLC method the amounts of Neu5Ac and Neu5Gc as well as their distribution among the culture media and cell surface of MG-63 and Saos-2 human osteosarcoma cell lines of high and low metastatic potential. It was determined that MG-63 cells produce up to 5-fold more total sialic acid as compared with the Saos 2 cells. Neu5Ac accounts for ca 60% of the total sialic acids secreted by MG-63 cells, whereas Neu5Gc is the predominant sialic acid present on the MG-63 cell membrane. Saos 2 cells secrete considerable amounts of Neu5Ac to culture media. The obtained data indicate that the human osteosarcoma cells express both forms of Sia-containing glycoconjugates; the differences in the amounts of each of the two major Sia types and their distribution may be related to their differences in morphology and/or metastatic potentials.  相似文献   

17.
Sialic acids containing glycoconjugates are very common in human neoplasias and their expression frequently correlates with malignant phenotype and the tumor grade. The majority of tumor markers containing sialic acids in man involve changes in the amount of total sialic acids and in the presence of the two main sialic acid types, Neu5Ac and Neu5Gc, and their derivatives. The aim of the present study was to examine whether malignant mesothelioma cell lines synthesize sialic acid containing glycoconjugates at both the extracellular and cell membrane levels and particularly whether the type and the content of Neu5Ac and Neu5Gc are of biological importance for mesothelioma cell differentiation and evaluation of its prognosis. The study was performed in three human malignant mesothelioma cell lines, two with a fibroblast like phenotype (STAV-FCS and Vester) and one of epithelial differentiation (STAV-AB), which developed from the pleural effusions of patients with malignant mesothelioma and in one human adenocarcinoma cell line (Wart). Neu5Ac and Neu5Gc were determined following a mild hydrolysis step and a sample clean-up procedure. The determination was performed by reversed-phase HPLC after the NeuAc and NeuGc had been converted to per-O-benzoylated derivatives. It was found that Neu5Gc is the major sialic acid in the culture media of all cell lines examined. Molar ratios of Neu5Ac to Neu5Gc showed that Neu5Gc is the predominant sialic acid in the culture medium of the fibroblast-like mesothelioma cells. Neu5Ac is almost undetectable in the cell membrane, whereas Neu5Gc is present in considerable amounts. The obtained results suggest that the type and the content of Neu5Ac and Neu5Gc in culture media are of biological importance for mesothelioma cell differentiation and may be of value in the evaluation of prognosis.  相似文献   

18.
Acyclic receptors incorporating neutral and cationic recognition sites show effective binding of N-acetylneuraminic acid (Neu5Ac), the most naturally abundant sialic acid, in highly competitive solvents such as dimethyl sulfoxide (DMSO) and water/DMSO. Receptors 6b and 7b are able to form neutral/charge-reinforced hydrogen bonds and ion pairs with Neu5Ac, similar to sialic acid-binding proteins. Syntheses and binding properties of the artificial receptors are discussed.  相似文献   

19.
Ando T  Li SC  Ito M  Li YT 《Journal of chromatography. A》2005,1078(1-2):193-195
This paper reports a facile method for the preparation of lyso-GM1 [Gal beta1-->3GalNAc beta1--> 4(Neu5Ac alpha2-->3)Galbeta1-->4Glc beta1-->1'-sphingosine] and lyso-GM2 [GalNAc beta1-->4(Neu5Ac alpha2-->3)Gal beta1-->4Glc beta1-->sphingosine], respectively, from GM1 [Galbeta1-->3GalNAc beta1-->4(Neu5Ac alpha2-->3)Galbeta1-->4Glc beta1-->1'-Cer] and GM2[GalNAc beta1-->4(Neu5Ac alpha2-->3)Galbeta1-->4Glc beta1-->1'-Cer], using sphingolipid ceramide deacylase and high performance anion-exchange chromatography (HPAEC). The enzymatically released lyso-GM1 and/or lyso-GM2 was effectively separated from its parent ganglioside by HPAEC using a Mono Q HR 5/5 column with an Amersham Biosciences fast protein liquid chromatography system. The yield was almost quantitative and the separation completed in approximately 3 h. This method is more convenient and effective than the conventional method using alkaline hydrolysis and silicic acid chromatography to generate and purify lyso-gangliosides.  相似文献   

20.
Borates are known to interact with carbohydrate moieties expressed on the surface of biological membranes of a variety of cells, viruses, bacteria, and fungi. This study revealed the anomalous binding profile of borate in aqueous solution with N-acetylneuraminic acid (Neu5Ac, sialic acid) as a potential receptor site on the surfaces of biological membranes using (11)B, (1)H, (13)C, and (15)N nuclear magnetic resonance spectroscopies. 3-(Propionamido)phenylboronic acid (PAPBA) was chosen as the model borate compound. The equilibrium constant (K) for Neu5Ac binding to PAPBA was compared with those for glucose, mannose, and galactose, which are the major carbohydrate constituents of glycoproteins and glycolipids expressed on biological membranes. In the Neu5Ac/PAPBA system, the unusual pH dependency of the K values, a decrease in K with increasing pH, was observed, suggesting the formation of a trigonal-formed complex stabilized by the coordination of an amide group of Neu5Ac at the C-5 position to the boron atom, forming intramolecular B-N or B-O bonding. Furthermore, the anomalously high complexing ability at physiological pH 7.4 was confirmed for this system, with the K value 37.6 which is approximately 7 times higher than that for glucose. This exceptionally high value of K at physiological pH, compared to those of other sugars, strongly suggests that the boronic acid selectively recognizes the Neu5Ac residues of the glycosylated components including glycoproteins and gangliosides existing on the surface of the biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号