首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of polymeric cobalt(II), nickel(II), zinc(II) and cadmium(II) azido complexes with hydrazine of the type [M(N2H4)(H2O)(N3)Cl]n, [M(N2H4)(N3)2]n and [M(N2H4)2(N3)2]n have been prepared. These were characterized by elemental analyses, magnetic susceptibility measurements, electronic and IR spectra. The complexes are highly insoluble in polar and non polar solvents. All the complexes decompose with explosion at different temperatures between 100°C to 200°C. The magnetic moment and electronic spectral data for Co(II) and Ni(II) complexes suggest that the complexes have octahedral structure. The ligand-field parameters (10 Dq, B, β, β° and LFSE) have also been calculated for all Co(II) and Ni(II) complexes which indicate a significant covalent character of M-L bonds. The IR spectra of the complexes show that the azide group and hydrazine molecule both act as bidentate bridging ligands in [M(N2H4)(H2O)(N3)Cl]n and [M(N2H4)(N3)2]n type complexes but the azide group is terminally bonded to metal in all [M(N2H4)2(N3)2]n type complexes.  相似文献   

2.
Complexes of the type [M(pash)Cl] and [M(Hpash)(H2O)SO4] (M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpash = p-amino acetophenone salicyloyl hydrazone) have been synthesized and characterized by elemental analyses, molar electrical conductance, magnetic moments, electronic, ESR and IR spectra, thermal studies and X-ray powder diffraction. All the complexes are insoluble in common organic solvents and are non-electrolytes. The magnetic moment values and electronic spectra indicate a square-planar geometry for Co(II), Ni(II) and Cu(II) chloride complexes and spin-free octahedral geometry for the sulfato complexes. The ligand coordinates through >C=N–,–NH2 and a deprotonated enolate group in all the chloro complexes, and through >C=N–, >C=O and–NH2 in the sulfato complexes. Thermal analyses (TGA and DTA) of [Cu(pash)Cl] show a multi-step exothermic decomposition pattern. ESR spectral parameters of Cu(II) complexes in solid state at room temperature suggest the presence of the unpaired electron in d x 2 ? y 2 . X-ray powder diffraction parameters for [Cu(pash)Cl] and [Ni(Hpash)(H2O)SO4] correspond to tetragonal and orthorhombic crystal lattices, respectively. The complexes show a fair degree of antifungal activity against Aspergillus sp., Stemphylium sp. and Trichoderma sp. and moderate antibacterial activity against E. coli and Clostridium sp.  相似文献   

3.
The present work describes the preparation and characterization of some metal ion complexes derived from 4-formylpyridine-4 N-(2-pyridyl)thiosemicarbazone (HFPTS). The complexes have the formula; [Cd(HFPTS)2H2O]Cl2, [CoCl2(HPTS)]·H2O, [Cu2Cl4(HPTS)]·H2O, [Fe (HPTS)2Cl2]Cl·3H2O, [Hg(HPTS)Cl2]·4H2O, [Mn(HPTS)Cl2]·5H2O, [Ni(HPTS)Cl2]·2H2O, [UO2(FPTS)2(H2O)]·3H2O. The complexes were characterized by elemental analysis, spectral (IR, 1H-NMR and UV–Vis), thermal and magnetic moment measurements. The neutral bidentate coordination mode is major for the most investigated complexes. A mononegative bidentate for UO2(II), and neutral tridentate for Cu(II). The tetrahedral arrangement is proposed for most investigated complexes. The biological investigation displays the toxic activity of Hg(II) and UO2(II) complexes, whereas the ligand displays the lowest inhibition activity toward the most investigated microorganisms.  相似文献   

4.
Complexes of the type [M(painh)(H2O)2X], where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl2 or SO4; painh = p-amino acetophenone isonicotinoyl hydrazone, have been synthesized and characterized by spectral and other physico-chemical techniques. The synthesized complexes are stable powders, insoluble in common organic solvents such as ethanol, benzene, carbon tetrachloride, chloroform and diethyl ether, and are non-electrolytes. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) studies show that the organic ligand decomposes exothermically through various steps. TGA and Infrared (IR) spectral studies indicate the presence of coordinated water in the metal complexes. Magnetic susceptibility measurements and electronic spectra suggest that Mn(II), Co(II), and Ni(II) complexes are paramagnetic with octahedral geometry, whereas Cu(II) complexes have distorted octahedral geometry. The neutral bidentate ligand bonds through >C=O and >C=N–groups in all the complexes. Electron Spin Resonance (ESR) spectra in the solid state show axial symmetry for [Cu(painh)(H2O)2(SO4)] and elongated rhombic symmetry for [Cu(painh)(H2O)2Cl2], suggesting an elongated tetragonally-distorted octahedral structure for both complexes. X-ray powder diffraction parameters for two complexes correspond to tetragonal and orthorhombic crystal lattices. The metal complexes show fair antifungal activity against Rizoctonia sp., Aspergillus sp., Stemphylium sp., and Penicillium sp. and appreciable antibacterial activity against Pseudomonas sp. and Escherichia coli.  相似文献   

5.
Transition metal complexes of ditertiary aminomethylphosphine ligand, (Ph2PCH2)NCH3 [N,N‐bis(diphenylphospinomethyl)aminomethane], dppam, with metal ions which are Ag(I), Au(I), Cu(I), and Co(II) have been synthesized under nitrogen atmosphere by the Schlenk method. [Ag(dppam)2]NO3 ( 1 ), [Au(dppam)2]Cl ( 2 ), and [Cu(dppam)2]Cl ( 3 ) complexes have been isolated as colorless solids, whereas [CoCl2(dppam)] ( 4 ) complex as a blue solid. All complexes have been characterized by atomic absorption, FT‐IR, NMR (1H, 13C, 31P) spectroscopic, thermogravimetric/differantial thermal analysis (TG/DTA), and elemental analysis techniques. Antimicrobial activity of 1 , 2 , 3 , and 4 were studied in vitro on 13 bacteria and 4 yeasts. The cobalt(II) phosphine complex has shown the best antimicrobial activity in comparison with the other metal complexes. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:484–491, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20145  相似文献   

6.
Piperidine-, morpholine-4-, N-methylpiperazine-4- and thiornorpholine-4-carbodithioate complexes of chromium(III), manganese(III), tin(II) and lead(II) are prepared and characterized by chemical analyses, spectroscopic methods (I.R. and electronic spectra), magnetic susceptibilities, conductivity measurements and mass spectra. The complexes are of the type M(R2dtc)n, where n is the oxidation number of the metal ion. Where possible a tentative stereochemistry of the complexes is discussed on the basis of the results obtained. In all the complexes the dithiocarbamate ligands show bidentate behaviour.  相似文献   

7.
Seven Zn(II) and Cd(II) complexes of ON donor acetone-N(4)-phenylsemicarbazone (HL) have been synthesized and physico-chemically characterized by partial elemental analyses, molar conductance measurements, infrared, electronic and 1H NMR spectral studies. The semicarbazone binds the metal as a neutral bidentate ligand in all the complexes. The crystal structures of acetone-N(4)-phenylsemicarbazone and [Cd(HL)2Cl2] have been determined by X-ray diffraction studies. The coordination geometry around cadmium(II) in the complex [Cd(HL)2Cl2] is distorted octahedral.  相似文献   

8.
Novel [1,3-di-[N 1 -4-methoxy-1,2,5-thiadiazole-3-yl-sulfanilamide(sulfametrole)]-2″4-bis-[1,3-dithiole-2-thione-4,5-dithiolate]-2′,4′-dichl-orocyclodiphosph(V)azane] (III) , was prepared and their coordinating behavior towards the metal ions Co(II), Ni(II), Cu(II), and Pd(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV, 1 H, and 31 P NMR, ESR, magnetic susceptibility, molar ratio, conductometric titration and electrical conductivity measurements. The prepared complexes showed high to moderate bactericidal activity compared with the ligand.  相似文献   

9.
The salts of the linkage isomers of thiocyanatopentammineruthenium(III) [Ru(NH3)5(NCS)]2+, [Ru(NH3)5(SCN)]2+ and dithiocyanatotetrammineruthenium(III) [Ru(NH3)4(NCS)2]+ along with those of tetrathiocyanatodiammineruthenate(III) [Ru(NH3)2(SCN)4]? have been synthesized. The insoluble polymeric complex [Ru(NH3)2(SCN)2]n has also been prepared. The compounds have been characterized by chemical analyses, spectral (IR, UV and visible), magnetic susceptibility, conductivity, cyclic voltammetry and chromatography studies.  相似文献   

10.
The thermal decomposition of salicylhydroxamic acid and its metal complexes with Ni(II), Co(II), Fe(II), Mn(II) and Zn(II) has been studied by TG, DTG, DTA and IR spectroscopy. All the compounds investigated decompose to yield intermediate N-hydroxylactams.Decomposition schemes have been proposed and reaction enthalpies and kinetic parameters have been calculated.  相似文献   

11.
The 5,5′-thiodisalicylato complexes of nickel(II) with water, ammonia, methylamine and pyridine were synthesized and their structure established to be [Ni(TDSA)L2·nH2O], where TDSA = 5,5′-thiodisalicylic acid, [C6H3(OH)(COOH)SC6H3(OH)(COOH)]. LH2O, NH3 CH3NH2 or pyridine, and n=3 for H2O, 2 for NH3 and CH3NH3, and 1 for pyridine complexes, from elemental analysis, IR and electronic spectroscopy, and magnetic susceptibility measurement. The thermal behaviour of the complexes has been studied by TG and DTA. TG shows three main steps of decomposition, viz. dehydration, axial base liberation, and decarboxylation leading to the formation of NiO at the final stage.  相似文献   

12.
The [Co(HOr)(H2O)2(im)2] (1), [Ni(HOr)(H2O)2(im)2] (2), [Zn(H2O)2(im)4](H2Or)2 (3) and [Cd(HOr)(H2O)(im)3] (4) complexes (H3Or: orotic acid, im: imidazole) were synthesized and characterized by elemental analysis, magnetic and conductance measurements, UV-vis and IR spectra. The thermal behaviour of the complexes was also studied by simultaneous thermal analysis techniques (TG, DTG and DTA). The orotate ligand (HOr2−) coordinated to the Co(II), Ni(II) and Cd(II) ions are chelated to the deprotonated pyrimidine nitrogen (N(3)) and the carboxylate oxygen, while do not coordinate to the Zn(II) ion is present as a counter-ion (H2Or). The first thermal decomposition process of all the complexes is endothermic deaquation. This stage is followed by partially (or completely) decomposition of the imidazole and orotate ligands. In the later stage, the remained organic residue exothermically burns. On the basis of the first DTGmax, the thermal stability of the complexes follows order: 2, 176°C>1, 162°C>4, 155°C>3, 117°C in static air atmosphere. The final decomposition products which identified by IR spectroscopy were the corresponding metal oxides.  相似文献   

13.
Manganese(II), cobalt(II), nickel(II) and copper(II) complexes with 1,5,11,15-tetraaza-21,22-dioxo-tricyclo [19,3,1,I6,10]-5,10,15-20-dicosatetraene (L), as a new macrocyclicligand, have been synthesized with and characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMF correspond to non-electrolytic nature of Mn(II), Co(II) and Cu(II) complexes, while showing a 1:2 electrolyte for thew Ni(II) complexe. Thus, these complexes may be formulated as [M(L)X2] and [Ni(L)]X2 (where M = Mn(II), Co(II) and Cu(II) and X = Cl- and NO3 -). On the basis of IR, electronic and EPR spectral studies, an octahedral geometry has been assigned for Mn(II) and Co(II), a square planar for Ni(II) and tetragonal for Cu(II) complexes. In vitro ligand and its metal complexes were also screened against the growth of some fungal and bacterial species in order to assess their antimicrobial properties.  相似文献   

14.
A new series of complexes is synthesized by template condensation of glyoxal and oxalyldihydrazide in methanolic medium in the presence of divalent cobalt, nickel, copper, zinc and cadmium salts forming complexes of the type: [M(C8H8N8O4)X2] where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and X = Cl−1, Br−1, NO 3 −1 , OAc−1. The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic susceptibility measurements, electronic, n.m.r., infrared and far infrared spectral studies. On the basis of these studies, a six coordinate octahedral geometry for these complexes has been proposed. The biological activities of the metal complexes have been tested in vitro against a number of pathogenic bacteria to assess their inhibiting potential. Most of the compounds have been found to exhibit remarkable antibacterial activities.  相似文献   

15.
Three new vic-dioximes, [L1H2], N-(4-ethylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, [L2H2], N-(4-butylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, and [L3H2], N-(4-methoxyphenyl)amino-1-acetyl-1-cyclohexenylglyoxime were synthesized from 1-acetyl-1-cyclohexeneglyoxime and the corresponding substituted aromatic amines. Metal complexes of these ligands were also synthesized with Ni(II), Cu(II), and Co(II) salts. These new compounds (ligands and complexes) were characterized with FT–IR, magnetic susceptibility measurement, molar conductivity measurements, mass spectrometry measurements, thermal methods (e.g. thermal gravimetric analysis), 1H NMR (Nuclear Magnetic Resonance) and 13C NMR spectral data and elemental analyses.  相似文献   

16.
Divalent metal complexes of general formula [M(2-nb)2(mc)2].2(2-nbH), where M = Co(II), Ni(II), Cu(II) or Zn(II), 2-nbH = 2-nitrobenzoic acid and mc = methyl carbazate (NH2NHCOOCH3), have been prepared and characterized by physicochemical and spectroscopic methods. Single-crystal X-ray study of the Cu(II) complex revealed that the molecule is centrosymmetric, with two N,O-chelating mc ligands in equatorial positions and a pair of monodentate 2-nb anions in the axial positions. The lattice 2-nbH molecules help to establish the packing of monomers through hydrogen-bonding interactions. Thermal stability and reactivity of the complexes were studied by TG–DTA. Emission studies show that these complexes are fluorescent.  相似文献   

17.
Complexes with chemical compositions VO(Hatth)2SO4, VO(Hatth)2SO4·py, [M(Hatth)2Cl·H2O]Cl [M = Mn(II), Co(II) and Ni(II)], [Cu(Hatth)2Cl]2Cl2, [Cu(Hatth)2· Cl·py]Cl, [Cd(Hatth)2Cl]Cl, M(Hatth)2Cl2 [M = Zn(II) and Hg(II)], VO(atth)2, VO(atth)2py, M(atth)2(py)2 [M = Mn(II) and Cu(II)], M(atth)2(H2O)2 [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)], Hatth = 2-acetylthiophene-2-thenoylhydrazone, and atth, its deprotonated form, have been prepared and characterized by analytical data, molar conductance, magnetic susceptibility, electronic and photoacoustic, ESR, IR and NMR spectral studies. X-ray diffraction study has been used to determine the shape and the dimensions of the unit lattice of copper(II) complexes.  相似文献   

18.
Metal complexes having the general composition [MCl2(H2O)2(L)2]·yH2O (where y?=?1?C3, M?=?Mn(II), Cu(II), Co(II), Ni(II), and Zn(II) and L?=?miconazole drug?=?MCNZ) and [MCl2(H2O)2(L)2]Cl·3H2O (where M?=?Cr(III) and Fe(III)) have been synthesized. All the synthesized complexes were identified and confirmed by elemental analyses, IR, diffused reflectance, and thermal analyses (TG and DTA) techniques as well as molar conductivity and magnetic moment measurements. The molar conductance data reveals that bivalent metal complexes are non-electrolytes while Cr(III) and Fe(III) complexes are electrolytes and of 1:1 type. IR spectral studies reveal that MCNZ is coordinated to the metal ions in a neutral unidentate manner with N donor site of the imidazole-N. On the basis of magnetic and solid reflectance spectral studies, an octahedral geometry has been assigned for the complexes. Detailed studies of the thermal properties of the complexes were investigated by thermogravimetry (TG) and differential thermal analyses (DTA) techniques and the activation thermodynamic parameters are calculated using Coats?CRedfern method. The free MCNZ drug and its complexes were also evaluated against bacterial species (P. aeruginosa, S. aureus, B. subtilis, E. Coli) and fungi (A. fumigatus, P. italicum, and C. albicans) in vitro. The activity data show that the metal complexes have higher biological activity than the parent MCNZ drug.  相似文献   

19.
Complexes of Mn(II), Co(II), Ni(II), Pd(II) and Pt(II) were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II), Co(II) and Ni(II) complexes in DMF correspond to non electrolyte nature, whereas Pd(II) and Pt(II) complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II), Co(II) and Ni(II) complexes, whereas square planar geometry assigned for Pd(II) and Pt(II). In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola) and some compounds found to be more active as commercially available fungicide like Chlorothalonil.  相似文献   

20.
Reaction of Ni(ClO4)2 · 6H2O with 1-alkyl-2-(arylazo)imidazole (RaaiR/) and sodium azide (NaN3) or ammonium thiocyanate (NH4SCN) (1 : 2 : 2 molar ratio) in methanol gives [Ni(RaaiR/)2(X)2] (X=N3 (3, 4) and SCN (5, 6). All these complexes are characterized by elemental analyses, UV–Vis and IR spectral data, thermal and magnetic moment measurements. The X-ray structure is confirmed by single crystal measurement of [Ni(Pai-Me)2(N3)2] (3a). Cyclic voltammetry exhibits quasireversible response at >0.80 V corresponding to Ni(III)/Ni(II) couple along with ligand reductions at negative potential (<?0.5 V) to SCE reference. The electronic structure, spectral and redox properties are explained by DFT (Gaussian03) calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号