首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between AlEt3 and silyl ethers, PhnSi(OMe)4-n (n = 0–3), was followed by 13C- and 29Si-NMR techniques in conditions close to those typical for an olefin polymerization reaction with supported Ziegler–Natta catalysts (A1Et3:silyl ether ratios from 1 to 10, temperature range 25–75°C). A1Et3 and silyl ethers form instantaneously at ambient temperature a donor-acceptor complex, which is stable at a 1:1 molar ratio. In the presence of excess A1Et3 the complex decomposes via a mechanism consisting, in the case of PhSi(OMe)3, of five consecutive steps: alternating complexation and ether reductions with the formation of alkylated silyl ethers, Ph(Et)nSi(OMe)3-n (n = 1,2), and dialkyl-aluminum alkoxides, (Et2A1OMe3)n (n = 2,3). The rate of decomposition was enhanced by the increasing number of methoxy groups present in the silyl ether, heating, or a high A1Et3:silyl ether ratio. The decomposition was not inhibited by the presence of 1-hexene.  相似文献   

2.
We synthesized 1-ethylimidazolyl-substituted nitronyl nitroxides, i.e., 2-(1-ethylimidazol-4-yl)- (L4Et) and 2-(1-ethylimidazol-5-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide-1-oxyl (L5Et). The stable radical L5Et is an ethyl analog of 2-(1-methylimidazol-5-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide-1-oxyl (L5Me) described earlier, the reaction of which with Cu(hfac)2 (hfac is 1,1,1,5,5,5-hexafluoropentane-2,4-dionate) leads to the formation of the [Cu(hfac)2(L5Me)2] jumping crystals. The reaction of Cu(hfac)2 with L5Et with reagent ratios 1: 2 and 1: 1 yields heterospin complexes [Cu(hfac)2(L5Et)2] and [Cu(hfac)2L5Et]2, respectively. X-ray diffraction study of the mononuclear complex [Cu(hfac)2(L5Et)2] determined that the compound has a packing similar to that of jumping crystals studied earlier, with the only difference being that the O...O contacts between neigh- boring nitroxide groups were found to be 0.3—0.5 Å longer than in [Cu(hfac)2(L5Me)2]. As a result of the lengthening of these contacts, [Cu(hfac)2(L5Et)2] crystals lack chemomechanical activi- ty. We found that when cooling crystals of binuclear complex [Cu(hfac)2L5Et]2 below 50 K, the antiferromagnetic exchange between unpaired electrons of the >N—?O groups of neighboring molecules leads to the full spin-pairing of the nitroxides, with only the Cu2+ ions contributing to the residual paramagnetism of the compound.  相似文献   

3.
The EPR technique has been used to study the photolysis of the mixed-ligand complex CuII(Et2dtc)Br in a 1:1 solvent mixture of chloroalkane and alcohol, where the chloroalkane is CCl4, CHCl3 or CH2Cl2 and the alcohol is MeOH, EtOH, i-PrOH or i-BuOH, in comparison with CuII(Et2dtc)Cl photolysis in CHBr3:ROH. It was found that while CuII(Et2dtc)Br photolysis in chloroalkane:ROH yielded CuII(Et2dtc)Cl as an intermediate, the opposite conversion of CuII(Et2dtc)Cl to CuII(Et2dtc)Br proceeded via CuII(Et2dtc)Cl photolysis in CHBr3:ROH. The final photolytic products in both cases were tetraethylthiuramdisulphide and the corresponding copper(II) salt (CuCl2 or CuBr2, respectively). The results obtained by EPR allowed to get some insight into the behaviour of the primary photolytic products towards both components of the mixed solvent.  相似文献   

4.
The First Polyiodo Complex – Triethylsulfoniumtriiodomercurate(II)-tris(diiodine), (Et3S)[Hg2I6]1/2 · 3 I2 After Raman spectroscopic investigation of the system HgI2/Et3SIx, x = 3, 5, 7, triethylsulfoniumtriiodomercuratetris(diiodine), (Et3S)[Hg2I6]1/2 · 3 I2 was synthesized by reacting of HgI2 and liquid Et3SI7. The compound crystallizes at room temperature triclinically in the space group P1 with a = 879.4(7), b = 1 209.1(5), c = 1 291.5(5) pm, α = 96.16(3)°, β = 103.82(6)°, γ = 99.05(5)° and Z = 2. The crystal structure is composed of disordered Et3S+ cations, the centrosymmetric complex anion [HgI2/2I2]22? and three connecting iodine molecules I2.  相似文献   

5.
Metal Complexes of Dyes. XI. A Dinuclear Bis N,S Platinum(II) Complex with an Indigoid 1,3,5,7-Tetraazafulvalene-4,8-dithione The dianion of 2,6-bis(diethylamino)-3,4,7,8-tetrahydro-1,3,5,7-tetraazafulvalene-4,8-dithione ( 1 -2 H+) reacts with the chloro-bridged platinum(II)-complex [(Et3P)PtCl2]2 to give a dark green (N,S)-bischelate (Et3P)(Cl)Pt( 1 -2 H+)Pt(Cl)(PEt3) ( 2 ). Spectroscopic data and a 1H-/1H-2D-COSY-NMR-spectra are discussed. Chelation leads to a bathochromic shift of about 200 nm.  相似文献   

6.
Single Crystal Electron Paramagnetic Resonance Study on the System Fe(NO)(Et2dsc)2/In(Et2dsc)3 (Et2dsc = diethyldiselenocarbamate). Crystal and Molecular Structure of Tris(diethyldiselenocarbamato)indium(III), InIII(Et2dsc)3 A single-crystal EPR study (T = 295 K) of Bis(diethyldiselenocarbamato)nitrosyliron(I) incorporated in Tris(diethyldiselenocarbamato)indium(III) is reported. The tensors g an AN have rhombic symmetry with g1 = 2.048, g2 = 2.058, g3 = 2.062 and A = 9.2 · 10?4 cm?1, A = 10.0 · 10?4 cm?1, A = 11.3 · 10?4 cm?1. The A values are discussed in terms of spin density distribution. The x-ray crystallographic data of InIII(Et2dsc)3 (space group P21/c, a = 6.731(3) Å, b = 18.05(9) Å, c = 20.914(10) Å, α = 90.02(2)°, β = 93.74(2)° and γ = 90.01(2)°) are given.  相似文献   

7.
The flexible ditopic ligand 1,2-bis(3-(4-pyridyl)pyrazol-1-yl)ethane (L4Et) displays remarkable versatility in the complexes that it forms with transition metals with products ranging from 1D chains to interpenetrating 3D networks. The L4Et ligand itself crystallises in the space group P21, adopting a helical twist, although it is found in a variety of other conformations in its complexes. Coordination polymers containing the L4Et ligand vary from almost straight, parallel 1D chains of [Ag2(L4Et)2(ClO4)2(DMF)]·DMF (1), through interdigitating helical complexes containing tetrahedral Zn(II), [Zn(NCS)2(L4Et)]·DMF·H2O (2) to 2D sheets of [Cu(L4Et)2(H2O)2](PF6)2·xH2O (3) and the three-fold interpenetrating 3D network of [Co(L4Et)2(NCS)2] (4). The 3D network adopts an unusual 3D 4-connected dmp (65.8) topology. Dimensionality can be limited by the use of chelating co-ligands, demonstrated by the formation of the dinuclear complex [{Cu(py-2,6-CO2)(H2O)}2(L4Et)] (5).  相似文献   

8.
A density functional theory (DFT) study reveals that dehydrogenation of ethanol catalyzed by aliphatic PNP pincer cobalt complexes, [(PNPEt)Co(H)(OMe)] (1a) and [(PNPEt)Co(H)(CH2SiMe3)] (1b) (PNPEt = bis(2-(diethylphosphino)ethyl)amine), undergoes a self-promoted mechanism, in which an ethanol assists the formation of H2 as a bridge for proton transfer. The calculated total free energy barriers of ethanol dehydrogenation catalyzed by 1a and 1b are 23.9 and 22.2 kcal mol?1, respectively, which indicate that 1b is a promising catalyst for the dehydrogenation of ethanol under mild conditions.  相似文献   

9.
Abstract

The interaction of SeCN? with a new gold-based antiarthritic drug auranofin (Et3PAuSATg, where SATg? = 2, 3, 4, 6-tetra-O-acetyl-l-thio-β-D-glucopyranosato-S) in aqueous methanol has been studied by 13C and 31P NMR spectroscopy. It is observed that SeCN?releases bom ligands (i. e., SATg? and Et3P) to form [ATgS-Au-CN]? and [Et3P-Au-SeCN]. These newly generated species undergo further disproportionation and decomposition to generate species such as [(Et3P)2Au]+, [Au(CN)2]?, Et3PO and metallic selenium. The formation of [(Et3P)2Au]+ and [Au(CN)2]? is found to be much faster for Et3PAuNO3 than for Et3PAuSATg when reacted wim SeCN?. Exchange between unlabelled CN? of Au(CN)2 ? and labelled Se13CN? was observed without selenium being precipitated from Se13CN?.  相似文献   

10.
Reactions of organomagnesium halides with group 13 metal halides lead to the formation of R3M type compounds (R = alkyl, aryl; M = Al, Ga, In) and are considered as the simplest methods of R3M compound syntheses. These seemingly simple reactions reveal a much more complex chemistry involving mixed magnesium-group 13 metal compounds. To elucidate the reaction course of reactions of organomagnesium halides with group 13 metal halides, we have studied reactions of R3M with organomagnesium halides. The interaction of Et3M with R1MgX led to the formation of following products being mixtures of crystalline ionic complexes with the general composition of [Et4-nR1nM][XMg (thf)5]+·(thf): [Et2.2Al(CH=CH2)1.8][BrMg (thf)5]+·(thf) ( 1 ), [Et3Ga(CH=CH2)][BrMg (thf)5]+·(thf) ( 2 ), [Et4Al][BrMg (thf)5]+·(thf) ( 3 ), [Et4Ga][BrMg (thf)5]+·(thf) ( 4 ), [Et2.9Al(C6H5)1.1][BrMg (thf)5]+·(thf) ( 5 ), [Et2.9Ga(C6H5)1.1][BrMg (thf)5]+·(thf) ( 6 ), [Et3.4GaMe0.6][IMg (thf)5]+·(thf) ( 7 ) and [Et4In][BrMg (thf)5]+·(thf) ( 8 ). A comparison of the production course of group 13 metal trialkyls R3M with a thermal decomposition of 1–8 products showed that reactions of MX3 with RMgX (X = Br, I; R = alkyl, aryl) yield initially intermediate ionic compounds, which must then be thermally decomposed to obtain pure R3M compounds. If group 13 metal bromides and iodides, and alkyl (aryl)magnesium bromides and iodides in thf are used, only intermediate products with the [R4M][XMg (thf)5]+·(thf) structure are formed.  相似文献   

11.
In the in situ Grignard metalation method (iGMM), the addition of bromoethane to a suspension of magnesium turnings and cyclopentadienes [C5H6 (HCp), C5H5-Si(iPr)3 (HCpTIPS)] in diethyl ether smoothly yields heteroleptic [(Et2O)Mg(CpR)(μ-Br)]2 (CpR=Cp ( 1 ), CpTIPS ( 2 )). The Schlenk equilibrium of 2 in toluene leads to ligand exchange and formation of homoleptic [Mg(CpR)2] ( 3 ) and [(Et2O)MgBr(μ-Br)]2 ( 4 ). Interfering solvation and aggregation as well as ligand redistribution equilibria hamper a quantitative elucidation of thermodynamic data for the Schlenk equilibrium of 2 in toluene. In ethereal solvents, mononuclear species [(Et2O)2Mg(CpTIPS)Br] ( 2’ ), [(Et2O)nMg(CpTIPS)2] ( 3’ ), and [(Et2O)2MgBr2] ( 4’ ) coexist. Larger coordination numbers can be realized with cyclic ethers like tetrahydropyran allowing crystallization of [(thp)4MgBr2] ( 5 ). The interpretation of the temperature-dependency of the Schlenk equilibrium constant in diethyl ether gives a reaction enthalpy ΔH and reaction entropy ΔS of −11.5 kJ mol−1 and 60 J mol−1, respectively.  相似文献   

12.
The anionic gold(I) complexes [1‐(Ph3PAu)‐closo‐1‐CB11H11]? ( 1 ), [1‐(Ph3PAu)‐closo‐1‐CB9H9]? ( 2 ), and [2‐(Ph3PAu)‐closo‐2‐CB9H9]? ( 3 ) with gold–carbon 2c–2e σ bonds have been prepared from [AuCl(PPh3)] and the respective carba‐closo‐borate dianion. The anions have been isolated as their Cs+ salts and the corresponding [Et4N]+ salts were obtained by salt metathesis reactions. The salt Cs‐ 3 isomerizes in the solid state and in solution at elevated temperatures to Cs‐ 2 with ΔHiso=(?75±5) kJ mol?1 (solid state) and ΔH=(118±10) kJ mol?1 (solution). The compounds were characterized by vibrational and multi‐NMR spectroscopies, mass spectrometry, elemental analysis, and differential scanning calorimetry. The crystal structures of [Et4N]‐ 1 , [Et4N]‐ 2 , and [Et4N]‐ 3 were determined. The bonding parameters, NMR chemical shifts, and the isomerization enthalpy of Cs‐ 3 to Cs‐ 2 are compared to theoretical data.  相似文献   

13.
A dinuclear tantalum complex, [Ta2Cl6(μ‐C4Et4)] ( 2 ), bearing a tantallacyclopentadiene moiety, was synthesized by treating [(η2‐EtC?CEt)TaCl3(DME)] ( 1 ) with AlCl3. Complex 2 and its Lewis base adducts, [Ta2Cl6(μ‐C4Et4)L] (L=THF ( 3 a ), pyridine ( 3 b ), THT ( 3 c )), served as more active catalysts for cyclotrimerization of internal alkynes than 1 . During the reaction of 3 a with 3‐hexyne, we isolated [Ta2Cl4(μ‐η44‐C6Et6)(μ‐η22‐EtC?CEt)] ( 4 ), sandwiched by a two‐electron reduced μ‐η44‐hexaethylbenzene and a μ‐η22‐3‐hexyne ligand, as a product of an intermolecular cyclization between the metallacyclopentadiene moiety and 3‐hexyne. The formation of arene complexes [Ta2Cl4(μ‐η44‐C6Et4Me2)(μ‐η22‐Me3SiC?CSiMe3)] ( 7 b ) and [Ta2Cl4(μ‐η44‐C6Et4RH)(μ‐η22‐Me3SiC?CSiMe3)] (R=nBu ( 8 a ), p‐tolyl ( 8 b )) by treating [Ta2Cl4(μ‐C4Et4)(μ‐η22‐Me3SiC?CSiMe3)] ( 6 ) with 2‐butyne, 1‐hexyne, and p‐tolylacetylene without any isomers, at room temperature or low temperature were key for clarifying the [4+2] cycloaddition mechanism because of the restricted rotation behavior of the two‐electron reduced arene ligands without dissociation from the dinuclear tantalum center.  相似文献   

14.
Summary Rate constants are reported and discussed for the reaction of [Au(Et4dien)Cl]2+ with HN3 (pH = 1) and of [Au(Et4dien-H)Cl]+ with N 3 (pH = 7) in several binary aqueous solvent mixtures.  相似文献   

15.
A tetrahedral Hg(II) diethyl dithiocarbamate (Et2Dt) complex containing triphenylphosphine (PPh3) of the composition [HgCl(κ2-Et2Dt)2(PPh3)] ( 1 ) is prepared. Furthermore, complex ( 1 ) is used as a synthone to prepare a novel series of complexes of the following composition [Hg(Et2Dt)L(PPh3)] {L = saccharinate ( 2 ), thiosaccharinate ( 3 ), benzisothiazolinate ( 4 ), benzothiozole-2-thiolate ( 5 ), and benzooxazole-2-thiolate ( 6 ) anions}. The resulted complexes ( 1 )–( 6 ) are characterized by elemental analysis, molar conductivity, powder X-ray diffraction, fourier transform Infrared, and NMR (1H and 31P) spectroscopic techniques. The Et2Dt ligand is coordinated as bidentate chelate through the sulfur atoms, whereas the L ligands are bonded as monodentate ligands to afford a tetrahedral geometry around the Hg(II) ion. Nitrogen adsorption–desorption isotherm for two of as-prepared complexes ( 2 ) and ( 3 ) are measured first to get their Brunauer–Emmett–Teller surface area. Moreover, the mentioned two complexes are evaluated for their ability to store hydrogen gas at 77 K. However, the results of the hydrogen storage tests proved that the selected complexes are all capable of storing hydrogen, but in varying degrees, where complex ( 2 ) exhibited a storage capacity of 4.22 wt% under 88 bar.  相似文献   

16.
[Au(Et2dtc)2][TcNCl4] – Synthesis and Structure [Au(Et2dtc)2][TcNCl4] (Et2dtc = N,N‐diethyldithiocarbamate) is formed by the reaction of [Au(CO)Cl] with [TcN(Et2dtc)2] in dichloromethane. The solid state structure of the compound is characterized by a large triclinic unit cell (space group, P1, a = 9.422(2), b = 22.594(5), c = 32.153(7) Å, α = 72.64(1), β = 85.19(1), γ = 86.15(1)°, Z = 12) and shows an unusual arrangement due to long‐range contacts between the technetium atoms and sulfur atoms of the [Au(Et2dtc)2]+ units (3.45–3.56 Å) which assemble two anions and one cation to {[TcNCl4][Au(Et2dtc)2] · [TcNCl4]} moieties.  相似文献   

17.
New Trinuclear Rhenium Complexes with Bridging Nitrido Ligands Trinuclear complexes with bridging nitrido ligands between the rhenium atoms are formed when [ReN(Et2dtc)2 · (Me2PhP)] (Et2dtc = N,N‐diethyldithiocarbamate) reacts with TlCl or Pr(O3SCF3)3. [Cl(Me2PhP)2(Et2dtc)Re≡N–Re(N) · Cl2(Me2PhP)–N≡Re(Et2dtc)(Me2PhP)2Cl] and [(Et2dtc)2 · (Me2PhP)Re≡N–Re(N)(Et2dtc)(Me2PhP)–N≡Re(Me2PhP) · (Et2dtc)2]+ contain two almost linear, asymmetric nitrido bridges. Additional, terminal nitrido ligands are located at the middle rhenium atoms.  相似文献   

18.
The hydride-bridged silylium cation [Et3Si−H−SiEt3]+, stabilized by the weakly coordinating [Me3NB12Cl11] anion, undergoes, in the presence of excess silane, a series of unexpected consecutive reactions with the valence-isoelectronic molecules CS2 and CO2. The final products of the reaction with CS2 are methane and the previously unknown [(Et3Si)3S]+ cation. To gain insight into the entire reaction cascade, numerous experiments with varying conditions were performed, intermediate products were intercepted, and their structures were determined by X-ray crystallography. Besides the [(Et3Si)3S]+ cation as the final product, crystal structures of [(Et3Si)2SMe]+, [Et3SiS(H)Me]+, and [Et3SiOC(H)OSiEt3]+ were obtained. Experimental results combined with supporting quantum-chemical calculations in the gas phase and solution allow a detailed understanding of the reaction cascade.  相似文献   

19.
Two silver(I) complexes of triethyl betaine (Et3N+CH2COO, Et3BET) have been prepared and characterized by X-ray crystallography. Both complexes, [Ag2(Et3BET)2 (NO3)2] (1) and [Ag2(Et3BET)2]n (ClO4)2n (2), contain centrosymmetric bis-carboxylato-bridged Ag2(carboxylato-O,O′)2 dimers (Ag---O = 2.16–2.23 Å). The dimeric unit in 1 is bound to a chelating nitrato group [Ag---O = 2.524(3), 2.619(3) Å] at each axial site, resulting in a discrete molecule. In 2 the dimers are extended into a stair-like cationic chain via the coordination of each metal centre by a carboxylato oxygen atom [Ag---O =2.565(5) Å] from an adjacent unit. The intra-dimer Ag… Ag distance is 2.928(1) Å for 1 and 2.856(2) Å for 2.  相似文献   

20.
Quantum chemical calculations of the [Mo3S7(Et2dtc)3](Et2dtc) complex in different solvents are performed. It is shown that the binding energy between the cluster [Mo3S7(Et2dtc)3]+ cation and the outersphere (Et2dtc)? anion exponentially decreases with increase in the solvent dielectric permittivity. By DOSY NMR it is determined that in chloroform, the cationic and anionic moieties of the complex form an associate (contact ion pair), while in strongly polar dimethyl sulfoxide these moieties move independently of one another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号