首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermodynamic model of the system H(+)-NH?(+)-Na(+)-SO?2?-NO??-Cl?-H?O is parametrized and used to represent activity coefficients, equilibrium partial pressures of H?O, HNO?, HCl, H?SO?, and NH?, and saturation with respect to 26 solid phases (NaCl(s), NaCl·2H?O(s), Na?SO?(s), Na?SO?·10H?O(s), NaNO?·Na?SO?·H?O(s), Na?H(SO?)?(s), NaHSO?(s), NaHSO?·H?O(s), NaNH?SO?·2H?O(s), NaNO?(s), NH?Cl(s), NH?NO?(s), (NH?)?SO?(s), (NH?)?H(SO?)?(s), NH?HSO?(s), (NH?)?SO?·2NH?NO?(s), (NH?)?SO?·3NH?NO?(s), H?SO?·H?O(s), H?SO?·2H?O(s), H?SO?·3H?O(s), H?SO?·4H?O(s), H?SO?·6.5H?O(s), HNO?·H?O(s), HNO?·2H?O(s), HNO?·3H?O(s), and HCl·3H?O(s)). The enthalpy of formation of the complex salts NaNH?SO?·2H?O(s) and Na?SO?·NaNO?·H?O(s) is calculated. The model is valid for temperatures < or approximately 263.15 up to 330 K and concentrations from infinite dilution to saturation with respect to the solid phases. For H?SO?-H?O solutions the degree of dissociation of the HSO?? ion is represented near the experimental uncertainty over wide temperature and concentration ranges. The parametrization of the model for the subsystems H(+)-NH?(+)-NO??-SO?2?-H?O and H(+)-NO??-SO?2?-Cl?-H?O relies on previous studies (Clegg, S. L. et al. J. Phys. Chem. A 1998, 102, 2137-2154; Carslaw, K. S. et al. J. Phys. Chem. 1995, 99, 11557-11574), which are only partly adjusted to new data. For these systems the model is applicable to temperatures below 200 K, dependent upon liquid-phase composition, and for the former system also to supersaturated solutions. Values for the model parameters are determined from literature data for the vapor pressure, osmotic coefficient, emf, degree of dissociation of HSO??, and the dissociation constant of NH? as well as measurements of calorimetric properties of aqueous solutions like enthalpy of dilution, enthalpy of solution, enthalpy of mixing, and heat capacity. The high accuracy of the model is demonstrated by comparisons with experimentally determined mean activity coefficients of HCl in HCl-Na?SO?-H?O solutions, solubility measurements for the quaternary systems H(+)-Na(+)-Cl?-SO?2?-H?O, Na(+)-NH?(+)-Cl?-SO?2?-H?O, and Na(+)-NH?(+)-NO??-SO?2?-H?O as well as vapor pressure measurements of HNO?, HCl, H?SO?, and NH?.  相似文献   

2.
CO dissociation: Three most probable pathways to CO dissociation on the Fe?(100) surface exist: a) direct, CO→C+O (-) and H-assisted b) H+CO?HCO→CH+O (-) or c) CO+H?COH→C+OH (-). Under high hydrogen pressure conditions and highly occupied surfaces the formation of HCO and subsequent dissociation to CH+O may at best compete with direct dissociation.  相似文献   

3.
We present the spin-orbit (SO) and Renner-Teller (RT) quantum dynamics of the spin-forbidden quenching O((1)D) + N(2)(X(1)Σ(g)(+)) → O((3)P) + N(2)(X(1)Σ(g)(+)) on the N(2)O X(1)A', ?(3)A", and b(3)A' coupled PESs. We use the permutation-inversion symmetry, propagate coupled-channel (CC) real wavepackets, and compute initial-state-resolved probabilities and cross sections σ(j(0)) for the ground vibrational and the first two rotational states of N(2), j(0) = 0 and 1. Labeling symmetry angular states by j and K, we report selection rules for j and for the minimum K value associated with any electronic state, showing that ?(3)A" is uncoupled in the centrifugal-sudden (CS) approximation at j(0) = 0. The dynamics is resonance-dominated, the probabilities are larger at low K, σ(j(0)) decrease with the collision energy and increase with j(0), and the CS σ(0) is lower than the CC one. The nonadiabatic interactions play different roles on the quenching dynamics, because the X(1)A'-b(3)A' SO effects are those most important while the ?(3)A"-b(3)A' RT ones are negligible.  相似文献   

4.
An extensive series of radical salts formed by the organic donor bis(ethylenedithio)tetrathiafulvalene (ET), the paramagnetic tris(oxalato)ferrate(III) anion [Fe(C(2)O(4))(3)](3-), and halobenzene guest molecules has been synthesized and characterized. The change of the halogen atom in this series has allowed the study of the effect of the size and charge polarization on the crystal structures and physical properties while keeping the geometry of the guest molecule. The general formula of the salts is ET(4)[A(I)Fe(C(2)O(4))(3)]·G with A/G = H(3)O(+)/PhF (1); H(3)O(+)/PhCl (2); H(3)O(+)/PhBr (3), and K(+)/PhI (4), (crystal data at room temperature: (1) monoclinic, space group C2/c with a = 10.3123(2) ?, b = 20.0205(3) ?, c = 35.2732(4) ?, β = 92.511(2)°, V = 7275.4(2) ?(3), Z = 4; (2) monoclinic, space group C2/c with a = 10.2899(4) ?, b = 20.026(10) ?, c = 35.411(10) ?, β = 92.974°, V = 7287(4) ?(3), Z = 4; (3) monoclinic, space group C2/c with a = 10.2875(3) ?, b = 20.0546(15) ?, c = 35.513(2) ?, β = 93.238(5)°, V = 7315.0(7) ?(3), Z = 4; (4) monoclinic, space group C2/c with a = 10.2260(2) ?, b = 19.9234(2) ?, c = 35.9064(6) ?, β = 93.3664(6)°, V = 7302.83(18) ?(3), Z = 4). The crystal structures at 120 K evidence that compounds 1-3 undergo a structural transition to a lower symmetry phase when the temperature is lowered (crystal data at 120 K: (1) triclinic, space group P1 with a = 10.2595(3) ?, b = 11.1403(3) ?, c = 34.9516(9) ?, α = 89.149(2)°, β = 86.762(2)°, γ = 62.578(3)°, V = 3539.96(19) ?(3), Z = 2; (2) triclinic, space group P1 with a = 10.25276(14) ?, b = 11.15081(13) ?, c = 35.1363(5) ?, α = 89.0829(10)°, β = 86.5203(11)°, γ = 62.6678(13)°, V = 3561.65(8) ?(3), Z = 2; (3) triclinic, space group P1 with a = 10.25554(17) ?, b = 11.16966(18) ?, c = 35.1997(5) ?, α = 62.7251(16)°, β = 86.3083(12)°, γ = 62.7251(16)°, V = 3575.99(10) ?(3), Z = 2; (4) monoclinic, space group C2/c with a = 10.1637(3) ?, b = 19.7251(6) ?, c = 35.6405(11) ?, β = 93.895(3)°, V = 7128.7(4) ?(3), Z = 4). A detailed crystallographic study shows a change in the symmetry of the crystal for compound 3 at about 200 K. This structural transition arises from the partial ordering of some ethylene groups in the ET molecules and involves a slight movement of the halobenzene guest molecules (which occupy hexagonal cavities in the anionic layers) toward one of the adjacent organic layers, giving rise to two nonequivalent organic layers at 120 K (compared to only one at room temperature). The structural transition at about 200 K is also observed in the electrical properties of 1-3 and in the magnetic properties of 1. The direct current (dc) conductivity shows metallic behavior in salts 1-3 with superconducting transitions at about 4.0 and 1.0 K in salts 3 and 1, respectively. Salt 4 shows a semiconductor behavior in the temperature range 300-50 K with an activation energy of 64 meV. The magnetic measurements confirm the presence of high spin S = 5/2 [Fe(C(2)O(4))(3)](3-) isolated monomers together with a Pauli paramagnetism, typical of metals, in compounds 1-3. The magnetic properties can be very well reproduced in the whole temperature range with a simple model of isolated S = 5/2 ions with a zero field splitting plus a temperature independent paramagnetism (Nα) with the following parameters: g = 1.965, |D| = 0.31 cm(-1), and Nα = 1.5 × 10(-3) emu mol(-1) for 1, g = 2.024, |D| = 0.65 cm(-1), and Nα = 1.4 × 10(-3) emu mol(-1) for 2, and g = 2.001, |D| = 0.52 cm(-1), and Nα = 1.5 × 10(-3) emu mol(-1) for 3.  相似文献   

5.
Detailed formaldehyde adsorption and dissociation reactions on Fe(100) surface were studied using first principle calculations and molecular dynamics (MD) simulations, and results were compared with available experimental data. The study includes formaldehyde, formyl radical (HCO), and CO adsorption and dissociation energy calculations on the surface, adsorbate vibrational frequency calculations, density of states analysis of clean and adsorbed surfaces, complete potential energy diagram construction from formaldehyde to atomic carbon (C), hydrogen (H), and oxygen (O), simulation of formaldehyde adsorption and dissociation reaction on the surface using reactive force field, ReaxFF MD, and reaction rate calculations of adsorbates using transition state theory (TST). Formaldehyde and HCO were adsorbed most strongly at the hollow (fourfold) site. Adsorption energies ranged from ?22.9 to ?33.9 kcal/mol for formaldehyde, and from ?44.3 to ?66.3 kcal/mol for HCO, depending on adsorption sites and molecular direction. The dissociation energies were investigated for the dissociation paths: formaldehyde → HCO + H, HCO → H + CO, and CO → C + O, and the calculated energies were 11.0, 4.1, and 26.3 kcal/mol, respectively. ReaxFF MD simulation results were compared with experimental surface analysis using high resolution electron energy loss spectrometry (HREELS) and TST based reaction rates. ReaxFF simulation showed less reactivity than HREELS observation at 310 and 523 K. ReaxFF simulation showed more reactivity than the TST based rate for formaldehyde dissociation and less reactivity than TST based rate for HCO dissociation at 523 K. TST‐based rates are consistent with HREELS observation. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
The sulfates Nb(2)O(2)(SO(4))(3), MoO(2)(SO(4)), WO(SO(4))(2,) and two modifications of Re(2)O(5)(SO(4))(2) have been synthesized by the solvothermal reaction of NbCl(5), WOCl(4), Re(2)O(7)(H(2)O)(2), and MoO(3) with sulfuric acid/SO(3) mixtures at temperatures between 200 and 300 °C. Besides the X-ray crystal structure determination of all compounds, the thermal behavior was investigated using thermogravimetric studies. WO(SO(4))(2) (monoclinic, P2(1)/n, a = 7.453(1) ?, b = 11.8232(8) ?, c = 7.881(1) ?, β = 107.92(2)°, V = 660.7(1) ?(3), Z = 4) and both modifications of Re(2)O(5)(SO(4))(2) (I: orthorhombic, Pba2, a = 9.649(1) ?, b = 8.4260(8) ?, c = 5.9075(7) ?, V = 480.27(9) ?(3), Z = 2; II: orthorhombic, Pbcm, a = 7.1544(3) ?, b = 7.1619(3) ?, c = 16.8551(7) ?, V = 863.64(6) ?(3), Z = 4) are the first structurally characterized examples of tungsten and rhenium oxide sulfates. Their crystal structure contains layers of sulfate connected [W═O] moieties or [Re(2)O(5)] units, respectively. The cohesion between layers is realized through weak M-O contacts (343-380 pm). Nb(2)O(2)(SO(4))(3) (orthorhombic, Pna2(1), a = 9.9589(7) ?, b = 11.7983(7) ?, c = 8.6065(5) ?, V = 1011.3(1) ?(3), Z = 4) represents a new sulfate-richer niobium oxide sulfate. The crystal structure contains a three-dimensional network of sulfate connected [Nb═O] moieties. In MoO(2)(SO(4)) (monoclinic, I2/a, a = 8.5922(6) ?, b = 12.2951(6) ?, c = 25.671(2) ?, β = 94.567(9)°, V = 2703.4(3) ?(3), Z = 24) [MoO(2)] units are connected through sulfate ions to a three-dimensional network, which is pervaded by channels along [100] accommodating the terminal oxide ligands. In all compounds except WO(SO(4))(2), the metal ions are octahedrally coordinated by monodentate sulfate ions and oxide ligands forming short M═O bonds. In WO(SO(4))(2), the oxide ligand and two monodentate and two bidentate sulfate ions build a pentagonal bipyramid around W. The thermal stability of the sulfates decreases in the order Nb > Mo > W > Re; the residues formed during the decomposition are the corresponding oxides.  相似文献   

7.
Reactions of 2,6-diacetylpyridine dioxime (dapdoH?) with Mn(NO?)? or Mn(SO?CF?)? under a variety of conditions or co-ligands yield compounds with the formula [Mn?O?(OMe)?(dapdo)?(dapdoH)?](X)? in which X = NO?? (1) or SO?CF?? (2), [Mn?O?(dapdo)?(NO?)?]·H?O (3) and [Mn(dapdoH?)(N?)?](n) (4). Compounds 1, 3 and 4 were structurally characterized and equivalent structures for 1 and 2 were inferred from spectroscopic and analytical results. Compounds 1 and 2 consist of hexanuclear Mn?(II)Mn?(III) complexes whereas 3 consists of an octanuclear Mn?(II)Mn?(III) cluster in which the manganese atoms exhibit a rare bicapped elongated octahedral topology. Compound 4 consists of a 1D system bridged by double end-on azido ligands. Variable temperature magnetic studies were performed between 2-300 K, confirming the ground state S = 5 for 1 and 2, S = 0 for 3 and ferromagnetic response for 4.  相似文献   

8.
The reactions between aluminium chloride and oxide anion were studied in molten LiCl+KCl eutectic at 470°C. For that purpose, a pO2? indicator electrode made with a membrane in yttria-stabilized zirconia has been used and tested by means of a carbonate ion whose dissociation constant, 10?2.15 atm, was determined. Then, the electrode has allowed us to obtain the formation constant of AlO+ (solvated by Cl?) and the solubility product of Al2O3 (S): 1010.7 and 10?27.4, respectively (molality scale). The equilibrium constant of the following system: 2HCl (g)+O2? agH2O (g)+2Cl? has also been determined: 10?9.93 atm mol kg?1. The conditional solubility of alumina in LiCl+KCl melt is discussed.  相似文献   

9.
The dissolution reaction of WO3 in pure molten K2S2O7 and in molten K2S2O7-K2SO4 mixtures is studied under static equilibrium conditions in the XWO3(0) = 0-0.33 mol fraction range at temperatures up to 860 °C. High temperature Raman spectroscopy shows that the dissolution leads to formation of W(VI) oxosulfato complexes, and the spectral features are adequate for inferring the structural and vibrational properties of the complexes formed. The band characteristics observed in the W=O stretching region (band wavenumbers, intensities, and polarization characteristics) are consistent with a dioxo W(=O)2 configuration as a core unit within the oxosulfato complexes formed. A quantitative exploitation of the relative Raman intensities in the binary WO3-K2S2O7 system allows the determination of the stoichiometric coefficient, n, of the complex formation reaction WO3 + nS2O7(2-) --> C(2n-). It is found that n = 1; therefore, the reaction WO3 + S2O7(2-) > WO2(SO4)2(2-) with six-fold W coordination is proposed as fully consistent with the observed Raman features. The effects of the incremental dissolution and presence of K2SO4 in WO3-K2S2O7 melts point to a WO3 · K2S2O7 · K2SO4 stoichiometry and a corresponding complex formation reaction in the ternary molten WO3-K2S2O7-K2SO4 system according to WO3 + S2O7(2-) + SO4(2-) --> WO2(SO4)3(4-). The coordination sphere of W in WO2(SO4)2(2-) (binary system) is completed with two oxide ligands and two chelating sulfate groups. A dimeric [{WO2(SO4)2}2(μ-SO4)2](8-) configuration is proposed for the W oxosulfato complex in the ternary system, generated from inversion symmetry of aWO2(SO4)3(4-) moiety resulting in two bridging sulfates. The most characteristic Raman bands for the W(VI) oxosulfato complexes pertain to W(=O)2 stretching modes (i) at 972 (polarized) and 937 (depolarized) cm(-1) for the ν(s) and ν(as) W(=O)2 modes of WO2(SO4)2(2-), and (ii) at 933 (polarized) and 909 (depolarized) cm(-1) for the respective modes of [{WO2(SO4)2}2(μ-SO4)2](8-).  相似文献   

10.
Solid orthorhombic crystals of potassium ferrate(VI) (K(2)FeO(4)) of a high-chemical purity (>99.0%) were characterized by low-temperature (1.5-5 K), high-temperature (463-863 K), and in-field (1.5 K/3 T) M?ssbauer spectroscopy. Potassium ferrate(VI) reveals a Néel magnetic transition temperature (TN) of approximately 3.8 K and a saturation hyperfine magnetic field of 13.8 T at 1.5 K. Spectral line intensities recorded below TN in an external magnetic field of 3 T manifest a perfect antiferromagnetic ordering. For the in situ monitoring of the thermal behavior of K(2)FeO(4), high-temperature M?ssbauer data were combined with those obtained from thermogravimetry, differential scanning calorimetry, and variable-temperature X-ray diffraction measurements. Such in situ approach allowed the identification of the reaction products and intermediates and yielded the first experimental evidence for the participation of CO2 in the decomposition process. As the primary conversion products, KFeO(2) and two potassium oxides in equivalent molar ratio, KO2 and K(2)O, were suggested. However, the KO2 phase is detectable with difficulty as it reacts very quickly with CO2 from air resulting in the formation of K(2)CO(3). The presented decomposition model is consistent with thermogravimetric data giving the mass loss of 8.0%, which corresponds to the participation of 1/6 mol of CO2 and liberation of 3/4 mol of O2 per 1 mol of K(2)FeO(4) (K(2)FeO(4) + 1/6CO2 --> KFeO(2) + 1/3K(2)O + 1/6K(2)CO(3) + 3/4O2). An explanation of the multistage reaction mechanism has an important practical impact for the optimization of the solid-state synthesis of potassium ferrate(VI).  相似文献   

11.
The ignition of COS + O2 mixtures diluted in argon was studied behind reflected shocks in a single-pulse shock tube over the temperature range of 1100–1700°K. Ignition delay times and the distribution of reaction products before and after ignition were determined experimentally. From a total of 63 tests run at varying initial conditions, the following correlation for the induction times was derived: where β1 = +0.30, β2 = 1.12, and E = 16.9 kcal/mole. Using a reaction scheme of 14 steps, the following values were obtained by a computer modeling of the induction times: β1 = +0.22, β2 = 1.55, and E = 17.3 kcal/mole. The calculations showed that the reaction COS + S → CO + S2 caused the inhibiting effect of the COS. The reaction COS → O ± CO2 + S has a very strong accelerating effect, whereas the parallel channel COS + O → CO + SO shows the opposite effect. It was also shown that the reaction O + S2 → SO + O is very slow and does not contribute to the overall oxidation reaction. It is suggested that the rate constant given to the four-center reaction COS + SO → CO2 + S2, that is, 1011 cm3/mole · sec at 300°K is incorrect. This constant is not much higher than 108 cm3/mole · sec at 1300°K.  相似文献   

12.
The reactions of SO3 with H, O, and OH radicals have been investigated by ab initio calculations. For the SO3 + H reaction (1), the lowest energy pathway involves initial formation of HSO3 and rearrangement to HOSO2, followed by dissociation to OH + SO2. The reaction is fast, with k(1) = 8.4 x 10(9)T(1.22) exp(-13.9 kJ mol(-1)/RT) cm(3) mol(-1) s(-1) (700-2000 K). The SO3 + O --> SO2 + O2 reaction (2) may proceed on both the triplet and singlet surfaces, but due to a high barrier the reaction is predicted to be slow. The rate constant can be described as k(2) = 2.8 x 10(4)T(2.57) exp(-122.3 kJ mol(-1)/RT) cm(3) mol(-1) s(-1) for T > 1000 K. The SO3 + OH reaction to form SO2 + HO2 (3) proceeds by direct abstraction but is comparatively slow, with k(3) = 4.8 x 10(4)T(2.46) exp(-114.1 kJ mol(-) 1/RT) cm(3) mol(-1) s(-1) (800-2000 K). The revised rate constants and detailed reaction mechanism are consistent with experimental data from batch reactors, flow reactors, and laminar flames on oxidation of SO2 to SO3. The SO3 + O reaction is found to be insignificant during most conditions of interest; even in lean flames, SO3 + H is the major consumption reaction for SO3.  相似文献   

13.
The photooxidation of formaldehyde in CH2O? O2, oxygen-lean mixtures was studied in the temperature range 298–378 K. H2 and CO formation and the loss of O2 proceed by a chain mechanism, which between 328 and 378 K follows the previously suggested kinetics [1] with one modification. The reaction HO2 + CH2O ? HO2CH2O (5) is now assumed to be reversible and ΔH is estimated to be between 14 and 19 kcal/mol. The relative yields of the chain formed H2 and CO and of the consumed O2 remained constant over the entire temperature range indicating that the relative efficiencies of the HO reactions: HO + CH2O → H2O HCO? (7), HO + CH2O → H2O + HCO (8) and HO + CH2O → HOCH2O (9) are temperature independent.  相似文献   

14.
The thermal dissociation of SO3 has been studied for the first time in the 1000-1400 K range. The experiments were conducted in a laminar flow reactor at atmospheric pressure, with nitrogen as the bath gas. On the basis of the flow reactor data, a rate constant for SO3 + N2 --> SO2 + O + N2 (R1b) of 5.7 x 10(17) exp(-40000/T) cm3/(mol s) is derived for the temperature range 1273-1348 K. The estimated uncertainty is a factor of 2. The rate constant corresponds to a value of the reverse reaction of k1 approximately 1.8 x 10(15) cm6 mol(-2) s(-1). The reaction is in the fall-off region under the investigated conditions. The temperature and pressure dependence of SO2 + O (+N2) was estimated from the extrapolation of low temperature results for the reaction, together with an estimated broadening parameter and the high-pressure limit determined recently by Naidoo, Goumri, and Marshall (Proc. Combust. Inst. 2005, 30, 1219-1225). The theoretical rate constant is in good agreement with the experimental results. The improved accuracy in k(1) allows a reassessment of the rate constant for SO3 + O --> SO2 + O2 (R2) based on the data of Smith, Tseregounis, and Wang (Int. J. Chem. Kinet. 1982, 14, 679-697), who conducted experiments on a low-pressure CO/O2/Ar flame doped with SO2. At the location in the flame where the net SO3 formation rate is zero, k2 = k1[SO2][M]/[SO3]. A value of 6.9 x 10(10) cm3 mol(-1) s(-1) is obtained for k2 at 1269 K with an uncertainty a factor of 3. A recommended rate constant k2 = 7.8 x 10(11) exp(-3065/T) cm3 mol(-1) s(-1) is consistent with other flame results as well as the present flow reactor data.  相似文献   

15.
We have measured 13C NMR spectra of uranyl(V) carbonate complex in D2O solution containing 1.003 M Na2(13)CO3 at various temperatures. Two singlet signals corresponding to free and coordinated CO3(2-) were observed at 169.13 and 106.70 ppm, respectively. From the peak area ratio, the structure of the uranyl(V) carbonate complex was determined as [U(V)O2(CO3)3]5-. Furthermore, kinetic analyses of the exchange reaction of free and coordinated CO3(2-) in [U(V)O2(CO3)3]5- were carried out using 13C NMR line-broadening. As a result, the first-order rate constant at 298 K and the activation parameters for CO3(2-) exchange reaction in [U(V)O2(CO3)3]5- were evaluated as 1.13 x 10(3) s(-1) and deltaH(double dagger) = 62.0 +/- 0.7 kJ x mol(-1), deltaS(double dagger) = 22 +/- 3 J x mol(-1) x K(-1), respectively. We suggest that the exchange follows a dissociative mechanism as in the corresponding [U(VI)O2(CO3)3]4- complex.  相似文献   

16.
Ab initio UMP2 and UQCISD(T) calculations, with 6-311G** basis sets, were performed for the titled reactions. The results show that the reactions have two product channels: NH2+ HNCO→NH3+NCO (1) and NH2+HNCO-N2H3+CO (2), where reaction (1) is a hydrogen abstraction reaction via an H-bonded complex (HBC), lowering the energy by 32.48 kJ/mol relative to reactants. The calculated QCISD(T)//MP2(full) energy barrier is 29.04 kJ/mol, which is in excellent accordance with the experimental value of 29.09 kJ/mol. In the range of reaction temperature 2300-2700 K, transition theory rate constant for reaction (1) is 1.68 × 1011- 3.29 × 1011 mL · mol-1· s-1, which is close to the experimental one of 5.0 ×1011 mL× mol-1· s-1 or less. However, reaction (2) is a stepwise reaction proceeding via two orientation modes, cis and trans, and the energy barriers for the rate-control step at our best calculations are 92.79 kJ/mol (for cis-mode) and 147.43 kJ/mol (for trans-mode), respectively, which is much higher than  相似文献   

17.
仰蜀薰  仝华翔 《化学学报》1987,45(7):711-714
Fe(II) induces the reaction between Tl3+ and H2O2. The rate of reaction is linearly proportional to the concentration of Fe2+ in the range 2.5 ?10-9-2.5 ?10-8 mol dm-3 (20? and 5 ?10-9-5 ?10-8 mol dm-3 (15?. The standard deviation is less than 0.071 ?10-8. A 1000-fold excess of Zn2+, Cd2+, Mg2+, Ni2+, Pb2+, Ba2+, Ca2+, Li+, Na+, Ag+, NO3-, SO42-, AcO-, HPO42-, 500-fold excess of Al3+, Fe3+, Co2+, Hg2+ and 100-fold excess of Ti4+, Cr3+, Cu2+, Br-, Cl- can be tolerated, but reducing agents such as (NH2)2SO4, NH2OH.HCl interfered. This kinetic method was applied to determine Fe(II) in standard zinc sample and fountain water, with satisfactory results.  相似文献   

18.
A variety of (diphosphine)platinum(II) carbonate complexes, (LL)Pt(CO(3)), are readily prepared from the corresponding (diphosphine)platinum dichlorides by treatment with silver carbonate in dichoromethane solution provided that water is present. This reaction also permits facile preparation of analogous (13)C-labeled complexes. The carbonate ligands in these complexes have been characterized by IR and (13)C NMR spectroscopy. Alternative preparative routes involve conversion of the precursor dichlorides to the corresponding dialkoxides or diphenoxides, followed by treatment with water and carbon dioxide. Various reaction intermediates have been spectroscopically observed in the latter syntheses. Two crystalline modifications of (Ph(2)PCH(2)CH(2)CH(2)PPh(2))Pt(CO(3)), one with and one without a dichloromethane of solvation, have been studied by single-crystal X-ray diffraction. Crystal data for PtP(2)O(3)C(28)H(26): P2(1)/c, Z = 4, T = 200 K, a = 10.362(8) ?, b = 14.743(6) ?, c = 19.183(10) ?, beta = 122.69(6) degrees. Crystal data for PtP(2)O(3)C(28)H(26).CH(2)Cl(2): P2(1)/c, Z = 4, T approximately 298 K, a = 11.744(2) ?, b = 15.526(3) ?, c = 15.866(3) ?, beta = 101.58(1) degrees.  相似文献   

19.
A series of novel organically templated metal sulfates, [C(5)H(14)N(2)][M(II)(H(2)O)(6)](SO(4))(2) with (M(II) = Mn (1), Fe (2), Co (3) and Ni (4)), have been successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction as well as with infrared spectroscopy, thermogravimetric analysis and magnetic measurements. All compounds were prepared using a racemic source of the 2-methylpiperazine and they crystallized in the monoclinic systems, P2(1)/n for (1, 3) and P2(1)/c for (2,4). Crystal data are as follows: [C(5)H(14)N(2)][Mn(H(2)O)(6)](SO(4))(2), a = 6.6385(10) ?, b = 11.0448(2) ?, c = 12.6418(2) ?, β = 101.903(10)°, V = 906.98(3) ?(3), Z = 2; [C(5)H(14)N(2)][Fe(H(2)O)(6)](SO(4))(2), a = 10.9273(2) ?, b = 7.8620(10) ?, c = 11.7845(3) ?, β = 116.733(10)°, V = 904.20(3) ?(3), Z = 2; [C(5)H(14)N(2)][Co(H(2)O)(6)](SO(4))(2), a = 6.5710(2) ?, b = 10.9078(3) ?, c = 12.5518(3) ?, β = 101.547(2)°, V = 881.44(4) ?(3), Z = 2; [C(5)H(14)N(2)][Ni(H(2)O)(6)](SO(4))(2), a = 10.8328(2) ?, b = 7.8443(10) ?, c = 11.6790(2) ?, β = 116.826(10)°, V = 885.63(2) ?(3), Z = 2. The three-dimensional structure networks for these compounds consist of isolated [M(II)(H(2)O)(6)](2+) and [C(5)H(14)N(2)](2+) cations and (SO(4))(2-) anions linked by hydrogen-bonds only. The use of racemic 2-methylpiperazine results in crystallographic disorder of the amines and creation of inversion centers. The magnetic measurements indicate that the Mn complex (1) is paramagnetic, while compounds 2, 3 and 4, (M(II) = Fe, Co, Ni respectively) exhibit single ion anisotropy.  相似文献   

20.
First quasi-classical trajectory calculations have been carried out for the S((3)P) + OH(X?(2)Π) → SO(X?(3)Σ(-)) + H((2)S) reaction on an ab initio global potential energy surface for the ground electronic state, X?(2)A', of HSO. Cross sections, computed for collision energies up to 1 eV, show no energy threshold and decrease with the increasing collision energy. Rate constants have been calculated in the 5-500 K temperature range. The thermal rate constant is in good agreement with approximate quantum results, while a disagreement is found at 298 K with the experimental data. Product energy distributions have also been reported at four collision energies from 0.001 to 0.5 eV. The shapes of the rovibrational and angular distributions suggest the formation of an intermediate complex that is more and more long-lived as the collision energy increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号