首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We designed a supramolecular strategy to modulate fluorescence in water under optical control. It is based on the entrapment of fluorophore-photochrome dyads within the hydrophobic interior of an amphiphilic polymer. The polymeric envelope around the dyads protects them from the aqueous environment, while imposing hydrophilic character on the overall supramolecular construct. In the resulting assemblies, the photochromic component can be operated reversibly on a microsecond timescale under the influence of ultraviolet stimulations. In turn, the reversible transformations control the emission intensity of the adjacent fluorophore. As a result, the fluorescence of such nanostructured constructs can be photomodulated for hundreds of cycles in water with microsecond switching speeds. Thus, our protocol for fast fluorescence switching in aqueous solutions can eventually lead to the realization of functional probes for the investigation of biological samples.  相似文献   

2.
Amphiphilic core-shell nanoparticles containing spiropyran moieties have been prepared in aqueous media. The nanoparticles consist of hydrophilic and biocompatible poly(ethyleneimine) (PEI) chain segments, which serve as the shell, and a hydrophobic copolymer of methyl methacrylate (MMA), a spiropyran-linked methacrylate, and a cross-linker, which forms the core of the nanoparticles. A hydrophobic fluorescent dye based on the nitrobenzoxadiazolyl (NBD) group was introduced into the nanoparticles to form NBD-nanoparticle complexes in water. The nanoparticles not only greatly enhance the fluorescence emission of the hydrophobic dye NBD in aqueous media, probably by accommodating the dye molecules in the interface between the hydrophilic shells and the hydrophobic cores, but also modulate the fluorescence of the dye through intraparticle energy transfer. This biocompatible and photoresponsive nanoparticle complex may find applications in biological areas such as biological diagnosis, imaging, and detection. In addition, this nanoparticle approach will open up possibilities for the fluorescence modulation of other hydrophobic fluorophores in aqueous media.  相似文献   

3.
A molecular photochromic spiropyran–polyoxometalate–alkyl organic–inorganic hybrid has been synthesized and fully characterized. The reversible switching of the hydrophobic spiropyran fragment to the hydrophilic merocyanine one can be easily achieved under light irradiation at different wavelengths. This switch changes the amphiphilic feature of the hybrid, leading to a light‐controlled self‐assembly behavior in solution. It has been shown that the hybrid can reversibly self‐assemble into vesicles in polar solvents and irreversibly into reverse vesicles in non‐polar solvents. The sizes of the vesicles and the reverse vesicles are both tunable by the polarity of the solvent, with the hydrophobic interactions being the main driving force.  相似文献   

4.
The surface active properties of aqueous solutions of invertible amphiphilic alternated polyesters differing by hydrophilic-lipophilic balance (HLB) and molecular weight have been determined over the wide concentration range. The polyesters are based on poly(ethylene glycol) (PEG) of two molecular weights and aliphatic dicarboxylic acids (decanedioic and dodecanedioic). The surface activity of the polyesters and their ability to form micellar assemblies (which was recently shown for organic solvents) has been confirmed in water. The central role of the balance of hydrophilic to hydrophobic groups ratio in the formation of polymeric arrangements having hydrophobic pockets and external hydrophilic shell has been shown. The effect of molecular weight has been found considerable as well. Two changes in slope have been observed for the more hydrophobic polyesters in the surface tension vs log concentration curve. The change at low concentration is believed to originate from the formation of polyester assemblies with a hydrophobic interior and hydrophilic exterior due to the interaction of hydrophobic fragments and macromolecular flexibility. The higher concentration region exhibits behavior consistent with a cmc, which was confirmed by additional dye solubilization experiments. Molecular structure of the polyester micelles is determined by the solubilization of a solvatochromic dye. The experiment confirmed that micellization of polyesters is accompanied by the association of more hydrophobic (aliphatic) constituents forming the micelle interior. The hydrophilic fragments (ethylene oxide groups) are involved in the formation of micelle exterior.  相似文献   

5.
We synthesized an amphiphilic coil-rod-coil triblock molecule consisting of hexa-p-phenylene as a rod block and poly(ethylene oxide) with the number of repeating units of 17 as coil blocks and investigated aggregation behavior in aqueous environment. The rod-coil molecule was observed to aggregate into discrete micelles consisting of hydrophobic disklike rod bundles encapsulated by hydrophilic poly(ethylene oxide) coils. The aromatic bundles of the micelles were demonstrated to be used as an efficient supramolecular reactor for the room temperature Suzuki cross-coupling reaction of a wide range of aryl halides, including even aryl chlorides with phenylboronic acids in aqueous environment. These results demonstrate that self-assembly of amphiphilic rod-coil molecules can provide a useful strategy to construct an efficient supramolecular reactor for aromatic coupling reaction.  相似文献   

6.
A new dyad 1 with two spiropyran units as the photochromic acceptors and one fluorescein unit as the fluorescent donor was synthesized and characterized. External inputs (ultraviolet light, visible light, and proton) induce the reversible changes of the structure and, concomitantly, the absorption spectrum of dyad 1 due to the presence of two spiropyran units. Only the absorption spectrum of the ME form of the spiropyran units in dyad 1 has large spectral overlap with the fluorescence spectrum of the fluorescein unit. Thus, the fluorescence intensity of dyad 1 is modulated by reversible conversion among the three states of the photochromic spiropyran units and the fluorescence resonance energy transfer (FRET) between the ME form and the fluorescein unit. Based on the fact that dyad 1 could "read out" three external input signals (ultraviolet light, visible ligh,t and proton) and "write" a compatible specific output signal (fluorescence intensity), dyad 1 described here can be considered to perform an integrated circuit function with one OR and one AND interconnected logic gates. The present results demonstrate an efficient strategy for elaborating and transmitting information at the single molecular level.  相似文献   

7.
We report a stimuli‐responsive fluorescent nanomaterial, based on graphene oxide coupled with a polymer conjugated with photochromic spiropyran (SP) dye and hydrophobic boron dipyrromethane (BODIPY) dye, for application in triggered target multicolor bioimaging. Graphene oxide (GO) was reduced by catechol‐conjugated polymers under mildly alkaline conditions, which enabled to formation of functionalized multicolor graphene nanoparticles that can be induced by irradiation with UV light and by changing the pH from acidic to neutral. Investigation of these nanoparticles by using AFM, fluorescence emission, and in vitro cell and in vivo imaging revealed that they show different tunable colors in bioimaging applications and, more specifically, in cancer‐cell detection. The stability, biocompatibility, and quenching efficacy of this nanocomposite open a different perspective for cell imaging in different independent colors, sequentially and simultaneously.  相似文献   

8.
Self-assembly in aqueous medium is of primary importance and widely employs hydrophobic interactions. Yet, unlike directional hydrogen bonds, hydrophobic interactions lack directionality, making difficult rational self-assembly design. Directional hydrophobic motif would significantly enhance rational design in aqueous self-assembly, yet general approaches to such interactions are currently lacking. Here, we show that pairwise directional hydrophobic/π-stacking interactions can be designed using well-defined sterics and supramolecular multivalency. Our system utilizes a hexasubstituted benzene scaffold decorated with 3 (compound 1) or 6 (compound 2) amphiphilc perylene diimides. It imposes a pairwise self-assembly mode, leading to well-defined supramolecular polymers in aqueous medium. the assemblies were characterized using cryogenic electron microscopy, small-angle X-ray scattering, optical spectroscopy, and EPR. Supramolecular polymerization studies in the case of 2 revealed association constants in 10(8) M(-1) range, and significant enthalpic contribution to the polymerization free energy. The pairwise PDI motif enables exciton confinement and localized emission in the polymers based on 1 and 2's unique photonic behavior, untypical of the extended π-stacked systems. Directional pairwise hydrophobic interactions introduce a novel strategy for rational design of noncovalent assemblies in aqueous medium, and bring about a unique photofunction.  相似文献   

9.
Molecular self‐assembly is a powerful means to construct nanoscale materials with advanced photophysical properties. Although the protection of the photo‐excited states from oxygen quenching is a critical issue, it still has been in an early phase of development. In this work, we demonstrate that a simple and typical molecular design for aqueous supramolecular assembly, modification of the chromophoric unit with hydrophilic oligo(ethylene glycol) chains and hydrophobic alkyl chains, is effective to avoid oxygen quenching of triplet–triplet annihilation‐based photon upconversion (TTA‐UC). While a TTA‐UC emission is completely quenched when the donor and acceptor are molecularly dispersed in chloroform, their aqueous co‐assemblies exhibit a clear upconverted emission in air‐saturated water even under extremely low chromophore concentrations down to 40 μm . The generalization of this nano‐encapsulation approach offers new functions and applications using oxygen‐sensitive species for supramolecular chemistry.  相似文献   

10.
One of the most fascinating subjects in areas such as nanoscience and biomimetic chemistry is concerned with the construction of novel supramolecular nanoscopic architectures with well defined shapes and functions. Supramolecular assemblies of aromatic rod molecules provide a facile entry into this area. Aromatic rigid rod molecules consisting of hydrophilic flexible chains, in aqueous solution can self-assemble into a variety of supramolecular structures through mutual interactions between aromatic rod molecules and water, including hydrophobic and hydrophilic interactions and pi-pi interaction. The supramolecular architecture in water can be manipulated by variation of the shape of the rigid segments, as well as the relative volume fraction of the flexible segment. The rigid aromatic segments have significant photonic and electronic properties. The self-assembly of aromatic rod molecules in water, therefore, can provide a strategy for the construction of well-defined and stable nanometer-size structures with chemical functionalities and physical properties as advanced materials for photonic, electronic and biological applications.  相似文献   

11.
The poly(carboxylic acid) bound phenosafranine and thionine dyes show that, the fluorescence intensity and lifetime increases first and starts to decrease after reaching a maximum at pH 4.0. The fluorescence decay curve of the fluorophore bound polymers follow the biexponential decay fit independent of pH, while poly(MAA-Th) follows single exponential function above pH 4.0. At low pH, a more compact environment of the fluorophore exerts a more hydrophobic environment. In the subnanosecond time domain the solvation process is found to be incomplete while in the nanosecond time scale the solvation of the macromolecular chains is found to be over. The time resolved fluorescence spectra of the polymer bound fluorophores at different pH indicate distinct hydrophobic and hydrophilic environments due to the dynamics of the macromolecules in dilute aqueous solutions. For the first time structural transitions involving solvent are observed in the nanosecond and picosecond time domains for the same macromolecule.  相似文献   

12.
Thermoresponsive poly(N-isopropylacrylamide) (PIPAAm) and its derivatives were utilized as chromatography column matrix modifiers to develop novel supports for thermoresponsive hydrophobic chromatography with aqueous mobile phase. In the column, matrix surfaces show thermoresponsive hydrophilic/hydrophobic property alterations, which alter interaction with and retention of solutes to be separated. We have also demonstrated that the electrostatic interaction of ionic solutes and charged, thermoresponsive polymer-modified surfaces can be modulated temperature changes in the aqueous mobile phase alone.  相似文献   

13.
Macroscopic supramolecular assembly bridges fundamental research on molecular recognition and the potential applications as bulk supramolecular materials. However, challenges remain to realize stable precise assembly, which is significant for further functions. To handle this issue, the Marangoni effect is applied to achieve spontaneous locomotion of macroscopic building blocks to reach interactive distance, thus contributing to formation of ordered structures. By increasing the density of the building blocks, the driving force for assembly transforms from a hydrophobic–hydrophobic interaction to hydrophilic–hydrophilic interaction, which is favorable for introducing hydrophilic coatings with supramolecular interactive groups on matched surfaces, consequently realizing the fabrication of stable precise macroscopic supramolecular assemblies.  相似文献   

14.
Size‐controlled and ordered assemblies of artificial nanotubes are promising for practical applications; however, the supramolecular assembly of such systems remains challenging. A novel strategy is proposed that can be used to reinforce intermolecular noncovalent interactions to construct hierarchical supramolecular structures with fixed sizes and long‐range ordering by introducing ionic terminals and fully rigid arms into benzene‐1,3,5‐tricarboxamide (BTA) molecules. A series of similar BTA molecules with distinct terminal groups and arm lengths are synthesized; all form hexagonal bundles of helical rosette nanotubes spontaneously in water. Despite differences in molecular packing, the dimensions and bundling of the supramolecular nanotubes show almost identical concentration dependence for all molecules. The similarities of the hierarchical assemblies, which tolerate certain molecular irregularities, can extend to properties such as the void ratio of the nanotubular wall. This is a rational strategy that can be used to achieve supramolecular nanotubes in aqueous environments with precise size and ordering at the same time as allowing molecular modifications for functionality.  相似文献   

15.
We report an innovative template‐assisted synthetic protocol for the selective functionalization of terminal triple bonds in oligophenyleneethynylenes (OPE) by pre‐organization in aqueous solution. By this approach, three new OPE‐based bolaamphiphiles substituted with hydrophilic poly(2‐ethyl‐2‐oxazoline) (PEtOx) chains of different length have been synthesized. The chain length was observed to strongly influence the aqueous supramolecular polymerization: bolaamphiphiles with longer hydrophilic chains aggregate into spherical nanoparticles in a stepwise fashion, whereas 2D anisotropic platelets are formed cooperatively if shorter PEtOx chains are used. Our results demonstrate that hydrophobic interactions can be strong enough to trigger cooperative effects in aqueous self‐assembly processes.  相似文献   

16.
An amphiphilic rectangular-shaped photochromic diarylethene bearing two hydrophobic alkyl chains and two hydrophilic tri(ethylene glycol) chains was synthesized, and its photoinduced morphological transformation in water was investigated. Two unexpected phenomena were revealed in the course of the experiments: a re-entrant photoinduced macroscopic morphological transformation and temperature-dependent kinetic products of supramolecular assembly. When the pure closed-ring isomer was dispersed in water, a re-entrant photoinduced morphological transformation, that is, a photoinduced transition from the hydrated phase to the dehydrated phase and then back to the hydrated phase, was observed by optical microscopy upon irradiation with green light at 20 °C; this was interpreted by the V-shaped phase diagram of the LCST transition. The aqueous assembly of the pure closed-ring isomer was controlled by changing the temperature; specifically, rapid cooling to 15 and 5 °C gave J and H aggregates, respectively, as the kinetic products. The thermodynamic product at both temperatures was a mixture of mostly H aggregate with a small amount of J aggregate. This behavior was rationalized by the temperature-dependent potential energy surface of the supramolecular assembly.  相似文献   

17.
This paper describes a universal, label-free fluorescence sensor that gauges the interaction of oligonucleotides with their targets. The sensor is based on supramolecular assemblies formed by oligonucleotides (polyanions) and small molecule cation surfactant in aqueous solution. The environmentally dependent dye pyrene, encapsulated in the apolar interiors of the assemblies via hydrophobic interactions works as the fluorescence probe. Target binding causes the conformational change of the oligonucleotides, which results in disorganization of supramolecular assemblies, release of pyrene into the aqueous solution and subsequent quenching of its fluorescence. The kinetic processes (including the formation of supramolecular assemblies and the release of pyrenes after adding the targets) were investigated. The fluorescence decreases of pyrenes are proportional to the concentrations of targets within the linear ranges. This label-free fluorescence system is simple, convenient, low cost, and can serve as an alternative tool for interaction studies of oligonucleotides with their targets, especially with small molecular targets.  相似文献   

18.
This work reports temperature-induced morphological change of ABC 3-miktoarm star terpolymer assemblies in aqueous solution. The terpolymer (MPEG)(PCL)(PPE) is composed of hydrophilic monomethoxy poly(ethylene glycol) (MPEG), hydrophobic poly(?-caprolactone) (PCL) and thermosensitive polyphosphoester (PPE) chains, emanating from a central junction point. It is thermosensitive in aqueous solution, forming spherical micelles at lower temperature, which transition to short nano-rod morphology at temperature higher than the cloud point. The temperature induced morphological transition of this biodegradable miktoarm star terpolymer shows that it has potential in stimulus-controlled drug delivery applications.  相似文献   

19.
Conversion of electronic excitation energy into vibrational energy was investigated for photochromic spiropyran molecules, using femtosecond UV-mid-IR pump-probe spectroscopy. We observe a weaker energy gap dependence than demanded by the "energy gap law". We demonstrate that large conformational changes accompanying the optical excitation can explain the observed time scale and energy gap dependence of ultrafast S(1) --> S(0) internal conversion processes. The possibility of dramatic deviations from standard energy gap law behavior is predicted. We conclude that controlling molecular conformations by rigid environments can have a substantial impact on photophysical and (bio)chemical processes.  相似文献   

20.
Dipyrrolyldiketone boron complexes, as π-conjugated acyclic anion receptors, act as building subunits of various assemblies through noncovalent interactions in the form of receptor-anion complexes. Instead of, or in addition to, the modification of receptor structures, the introduction of anion modules as building blocks for the assemblies was found to be useful in forming various soft materials. Gallic carboxylate derivatives 3-n (n = 16, 18, 20), as tetrabutylammonium (TBA) salts, form receptor-anion-module complexes that can be used to fabricate supramolecular assemblies. Combinations of aliphatic anion modules 3-n and receptors 1a,b along with a TBA cation afforded products with mesophases, which were indicated by differential scanning calorimetry and polarized optical microscopy. X-ray diffraction measurements of the solid states and mesophases of 1a·3-n·TBA and 1b·3-n·TBA revealed highly ordered structures including lamellar structures, which could be modulated by the lengths of the alkyl chains of the modules. Functional materials exhibiting electrical conductivity were fabricated by using combinations of anionic building blocks that form assemblies by themselves and π-conjugated acyclic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号