首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution X-ray diffraction data, in conjunction with DFT(B3LYP) quantum calculations, have been used in a QTAIM analysis of the charge density in the trimethylenemethane (TMM) complex Fe(eta(4)-C[CH(2)](3))(CO)(3). The agreement between the theoretical and experimental topological properties is excellent. Only one bond path is observed between the TMM ligand and the Fe atom, from the central C(alpha) atom. However, much evidence, including from the delocalization indices and the source function, suggests that there is a strong chemical interaction between the Fe and C(beta) atoms, despite the formal lack of chemical bonding according to QTAIM.  相似文献   

2.
The reactions of the heterometallic complexes (-H)Os3(-O2CC5H4FeCp)(CO)10 (1) and Fe{(-O2CC5H4)(-H)Os3(CO)10}2 (2) with CF3COOH, CF3SO3H, and AcCl were studied. The reaction of 1 with CF3COOH involves interaction with the Cp ligands, protonation of the O atom of the bridging carboxylate group, and oxidative degradation of the complex. At low concentrations, CF3SO3H protonates the O atom of the bridging carboxylate group, while at high concentrations, degradation of the complex takes place. The reaction of complex 2with either CF3COOH or low concentrations of CF3SO3H results in successive elimination of two [(-H)Os3(CO)10] cluster fragments due to protonation of the O atoms of the carboxylate groups. In the case of high CF3SO3H concentrations, the Os—Os bonds of both cluster fragments of 2 are also protonated to give the [Fe{(-O2CC5H4)(-H)2Os3(CO)10}2]2+ dication. The Friedel—Crafts acylation of 1 takes place only when a large excess of AcCl and AlCl3 is used to give two new complexes, (-H)Os3(-O2CC5H4FeC5H4C(O)CH3)(CO)10 and (-H)Os3(-O2CC5H3C(O)CH3FeCp)(CO)10 in a 2 : 1 ratio.  相似文献   

3.
Reaction of the cluster Os3(μ-H)(μ-OH)(CO)10 (1) with 1-naphthol afforded the isomeric clusters 2a and 3a with the formulae Os3(μ-H)23-1-OC10H6)(CO)9. A similar reaction with 2-naphthol, however, gave Os3(μ-H)(μ-2-OC10H7)(CO)10, 4b, and the analogue of 2a. These clusters have been structurally characterised to confirm the mode of anchoring of the naphthols.  相似文献   

4.
Pyrolysis a the cluster Os3(µ-H h (CO)10 (SnMe2 H) produced an as yet unidentified purple duster, which upon reaction with PEt2Ph at room temperature, gave essentially a quantitative yield of the cluster Os3(µ-H)3(CO)93-Sn) Os3(µ-H)(CO)10(PEt2Ph), 4. The X-ray structure of 4 (as the toluene solvate) shows that it consists Or two Os, triangles linked through a µ4-Sn unit, such that one of the Os3 triangle is µ3-bonded to the Sn atom (Os-Sn range 2.689(2)–2.707(2) Å) and the other is bonded via a single covalent bond (Os-Sn = 2.643(2) Å). The phosphine ligand occupies the equatorial site on a second osmium atom a be latter Os3 moiety that is syn to the Sn atom; the unique bridging hydride ligarid is believed to occupy a site that Acis to both the P and Sn atoms. Crystallographic data for compound4. 0.5C7H8: space group,P ; ca= 11862(4) Å,b = 12.940(4) Å,c = 16.513(5) Å, =68.96(3),=80.60(3)°,=62.49(2).R=0.029, 4118 observed reflections.  相似文献   

5.
The charge density in 2,5-dimethoxybenzaldehyde thiosemicarbazone (1) has been studied experimentally using Mo-K(α) X-ray diffraction at 100 K, and by theory using DFT calculations at the B3LYP/6-311++G(2d,2p) level. The quantum theory of atoms in molecules (QTAIM) was used to investigate the extent of π-delocalization in the thioamide side-chain, which is virtually coplanar with the benzene ring. The experimental and theoretical ellipticity profiles along the bond paths were in excellent agreement, and showed that some of the formal single bonds in the side-chain have significant π-bond character. This view was supported by the magnitudes of the topological bond orders and by the delocalization indices δ(Ω(A), Ω(B)). An orbital decomposition of δ(Ω(A), Ω(B)) demonstrated that there was significant π-character in all the interchain non-H chemical bonds. On the other hand, the source function referenced at the interchain bond critical points could not provide any evidence for π-delocalization, showing instead only limited σ-delocalization between nearest neighbors. Overall, the topological evidence and the atomic graphs of the oxygen atoms did not provide convincing evidence for π-delocalization involving the methoxy substituents.  相似文献   

6.
The reaction of [Os3(CO)10(μ-dppm)] (1) with tBu2PH in refluxing diglyme results in the electron-deficient metal cluster complex [Os3(CO)5(μ3-H)(μ-PtBu2)2(μ-dppm)] (2) (dppm = Ph2PCH2PPh2) in good yields. The molecular structure of 2 has been established by a single crystal X-ray structure analysis. In contrast to the known homologue [Ru3(μ-CO)(CO)4(μ3-H)(μ-H)(μ-PtBu2)2(μ-dppm)] (3), no bridging carbonyl ligand was found in 2. The electronically unsaturated cluster 2 does not react with carbon monoxide under elevated pressure, therefore 2 seems to be coordinatively saturated by reason of the high steric demands of the phosphido ligands.  相似文献   

7.
The complexes Pt(nb)3-n(P-iPr3)n (n=1, 2, nb=bicyclo[2.2.1]hept-2-ene), prepared in situ from Pt(nb)3, are useful reagents for addition of Pt(P-iPr3)n fragments to saturated triruthenium clusters. The complexes Ru3Pt(CO)11(P-iPr3)2 (1), Ru3Pt(-H)(3-3-MeCCHCMe)(CO)9(P-iPr3) (2), Ru3Pt(3-2-PhCCPh)(CO)10(P-iPr3) (3), Ru3Pt(-H)(4-N)(CO)10(P-iPr3) (4) and Ru3Pt(-H)(4-2-NO)(CO)10(P-iPr3) (5) have been prepared in this fashion. All complexes have been characterized spectroscopically and by single crystal X-ray determinations. Clusters 1–3 all have 60 cluster valence electrons (CVE) but exhibit differing metal skeletal geometries. Cluster 1 exhibits a planar-rhomboidal metal skeleton with 5 metal–metal bonds and with minor disorder in the metal atoms. Cluster 2 has a distorted tetrahedral metal arrangement, while cluster 3 has a butterfly framework (butterfly angle=118.93(2)°). Clusters 4 and 5 posseses 62 CVE and spiked triangular metal frameworks. Cluster 4 contains a 4-nitrido ligand, while cluster 5 has a highly unusual 4-2-nitrosyl ligand with a very long nitrosyl N–O distance of 1.366(5) Å.  相似文献   

8.
Fe3(CO)92-H)(μ3-S-t-Bu) reacts with amines in aprotic solvents to give salts [Fe3(CO)93-S-t-Bu)][AminH]+ under deprotonation. The association of cluster and amine under formation of a solvated ion pair follows a second order rate law. The isotope effects kH/kD as well as the rate constants are strongly correlated with the steric demand of the individual bases used: The largest rate constants and the largest isotope effects (up to kH/kD = 13) are observed for bases with the least steric hindrance.  相似文献   

9.
The application of 35 GHz pulsed EPR and ENDOR spectroscopies has established that the biomimetic model complex L(3)Fe(μ-NH)(μ-H)FeL(3) (L(3) = [PhB(CH(2)PPh(2))(3)](-)) complex, 3, is a novel S = (1)/(2) type-III mixed-valence di-iron II/III species, in which the unpaired electron is shared equally between the two iron centers. (1,2)H and (14,15)N ENDOR measurements of the bridging imide are consistent with an allyl radical molecular orbital model for the two bridging ligands. Both the (μ-H) and the proton of the (μ-NH) of the crystallographically characterized 3 show the proposed signature of a 'bridging' hydride that is essentially equidistant between two 'anchor' metal ions: a rhombic dipolar interaction tensor, T ≈ [T, -T, 0]. The point-dipole model for describing the anisotropic interaction of a bridging H as the sum of the point-dipole couplings to the 'anchor' metal ions reproduces this signature with high accuracy, as well as the axial tensor of a terminal hydride, T ≈ [-T, -T, 2T], thus validating both the model and the signatures. This validation in turn lends strong support to the assignment, based on such a point-dipole analysis, that the molybdenum-iron cofactor of nitrogenase contains two [Fe-H(-)-Fe] bridging-hydride fragments in the catalytic intermediate that has accumulated four reducing equivalents (E(4)). Analysis further reveals a complementary similarity between the isotropic hyperfine couplings for the bridging hydrides in 3 and E(4). This study provides a foundation for spectroscopic study of hydrides in a variety of reducing metalloenzymes in addition to nitrogenase.  相似文献   

10.
The molecular electron densities of structurally related cationic ([(κ(2)-3-P(i)Pr(2)-2-NMe(2)-indene)Rh(COD)](CF(3)SO(3)), [1c](CF(3)SO(3))) and formally zwitterionic ([(κ(2)-3-P(i)Pr(2)-2-NMe(2)-indenide)Rh(COD)], 1z) complexes were accurately determined using synchrotron bright-source X-ray radiation at 30 K followed by multipolar refinement (COD = η(4)-1,5-cyclooctadiene). The densities were also obtained from density functional theory calculations with a large, locally dense basis set. A 28-electron ([Ar]3d(10)) core of the Rh atom was modeled by an effective core potential to obtain a density that was then augmented with relativistic cores according to the Keith-Frisch approximation. Calculations were performed at the experimental geometry and after vacuum-phase geometry optimization starting from the experimental geometry. Experimental and calculated geometries and electron-density distributions show that the electron density and electronic structure in the region of the Rh center are not significantly altered by protonation of the aromatic ring and that formal removal of CF(3)SO(3)H from [1c](CF(3)SO(3)) affords a complex 1z possessing substantial zwitterionic character (with a charge separation of ca. 0.9 electronic charge) featuring a negatively charged aromatic indenide framework. Further, the molecular electrostatic potentials of 1c and 1z exhibit similar topography around the metal, despite being drastically different in the vicinity of the indene or indenide portion of the cation (1c) and zwitterion (1z), respectively. Collectively, these observations obtained from high-level experimental and theoretical electron-density analysis confirm, for the first time, that appropriately designed zwitterionic complexes can effectively emulate the charge distribution found within ubiquitous cationic platinum-group metal catalyst complexes, in keeping with recent catalytic investigations.  相似文献   

11.
The redox properties of the clusters Ru3(CO)12(1), Ru3(μ-H)(μ3122-C2Fe)(CO)9 (2), OS3(μ-H)(μ3122-C2Fe)(CO)9 (3), Ru4(μ-H)(μ41112-C2Fe)(CO)12 (4), and RuOS3(μ-H)(μ41112-C2Fe)(CO)12 (5) in THF have been studied by cyclic voltammetry in the temperature range from ?60 to +20°C. It was demonstrated that reversible one-electron oxidation of the ferrocenyl fragment in clusters 2–5 occurs at more positive potentials (δE 0=0.15–0.26 V) than that of free ferrocene. This is indicative of the electron-withdrawing character of the cluster core with respect to the ferrocenylacetylide ligand. The electron-withdrawing effect of the metal core is more pronounced in tetranuclear clusters4 and 5 than in trinuclear clusters2 and3. Unlike complexes13, which undergo irreversible reduction, complexes4 and5 undergo reversible one-electron reduction to form the corresponding radical anions4 ? and5 ?.  相似文献   

12.
Reaction of the heteronuclear cluster RuOs3(μ-H)2(CO)13 (1) with azulene under thermal activation afforded the novel clusters RuOs3(μ-H)(CO)93522-C10H9) (3) and Ru2Os3(μ-H)2(CO)13(μ-CO)(μ352-C10H8) (5a), with 4,6,8-trimethylazulene to give RuOs3(μ-H)(CO)8(μ-CO)(μ,η54-C10H6Me3) (4) and Ru2Os3(μ-H)2(CO)13(μ-CO)(μ352-C10H5Me3) (5b), and with guaiazulene to give Ru2Os3(CO)113533-C10H5Me2iPr) (6), respectively. In 35, cluster-to-ligand hydrogen transfer appears to have taken place, with the organic moiety capping a trimetallic face in 3, bridging a metal–metal bond in 4 and via a μ352 bonding mode in 5a and 5b. Cluster 6 contains a trigonal bipyramidal metal framework with the guaiazulene ligand over a triangular metal face. All five clusters have been completely characterised, including by single-crystal X-ray diffraction analysis.  相似文献   

13.
Vibrational spectra of the metal cluster complexes H3Ru33-CH)(CO)9 and H3Ru33-CCl)(CO)9 have been measured and the vibrations of the central (μ3-CY)Ru3 groupings assigned. The spectra are consistent with approximate C3v symmetry of the cluster units in the crystal. Approximate normal-coordinate analyses have been carried out for the (μ3-CY)Ru3 molecular fragments and the derived force constant values are compared with those obtained in similar analyses of the analogous cobalt cluster species.  相似文献   

14.
Lactate dehydrogenase (LDH) is an enzyme that catalyzes the reduction of nicotinamide adenine dinucleotide (NADH) and pyruvate to nicotinamide adenine dinucleotide (NAD+) and D-lactate in the final step of anaerobic glycolysis. This enzyme belongs to the family of oxidoreductases. Humans possess two isoforms of LDH enzyme: NAD-dependent L-lactate dehydrogenase (L-LDH) and NAD-dependent D-lactate dehydrogenase (D-LDH). D-LDH is released during tissue damage, and is a sign of diseases such as kidney stones, heart failure, and some types of cancers and appendicitis. Accordingly, the design and construction of biosensors for the determination of lactate levels are important. The thermal sensitivity of D-LDH and low protein production in the host bacteria limit the use of this protein in certain applications. To solve these problems, two solutions were used in this study. First, the codon-optimized 1008 bp D-LDH gene fused with a histidine tag was cloned at the NcoI/XhoI sites and expressed in E. coli BL21. Second, a new metal–organic framework (Fe3O4NPs@Ni-MOF) was synthesized and used for immobilization and stabilization of D-LDH. Fe3O4NPs@Ni-MOF core-shell nanocomposites were characterized by Fourier transform infrared spectroscopy, vibrating sample magnetometer, scanning electron microscopy, X-ray diffraction, and the Brunauer–Emmett–Teller method. In comparison with the free enzyme, the immobilized enzyme presented better stability at high temperatures. The immobilization of the enzyme could be useful because most reactions happen at high temperatures in industry. To examine the effect of Fe3O4NPs@Ni-MOF on the adsorption and conformation of D-LDH at the atomistic level, a molecular dynamics simulation was carried out. Our study showed that the interaction between Fe3O4NPs@Ni-MOF and D-LDH involved van der Waals interactions, hydrophobic interaction energies, cation–π interaction between the Ni ions of the MOF with the enzyme residues and also, the hydrogen bond interactions between enzyme and heteroatoms in the MOF. Root mean square fluctuation and secondary structure analysis showed that Fe3O4NPs@Ni-MOF protected the conformation of the enzyme.  相似文献   

15.
A neutral triosmium alkylidyne carbonyl cluster containing the 4-vinylpyridine (4vpy) moiety [Os3(µ-H)2(CO)93-CNC5H4-CH=CH2)] (1) has been prepared as red crystalline solids in good yield. Monomer (1) was copolymerized with styrene in the presence of ,'-azobis(isobutyronitrile) (AIBN) in chloroform at 60°C and a polymer-immobilized alkylidyne cluster of osmium was obtained. To compare the spectroscopic properties with the copolymers, a structurally similar repeating unit of the copolymers, [Os3(µ-H)2(CO)9(µ-3-CNC5H4-CH2CH3)I](2), has also been synthesized and characterized.  相似文献   

16.
The reaction of H(2)L (N,N'-dimethyl-N,N'-bis(2-hydroxy-3-methoxy-5-methylbenzyl)-ethylenediamine) with different copper salts, in methanol and using a H(2)L/Cu = 2 : 3 molar ratio, led to four new bis(μ-diphenoxo)-bridged Cu(3) complexes of general formula [{Cu(S)(μ-L)}(2)Cu(H(2)O)(2n)]X(2) (S = CH(3)OH, n = 1 and X = BF(4)(-) for (1) or ClO(4)(-) for (2); S = Br(3)(-) anion and n = 1 without any X species for (3); S = H(2)O, n = 0 and X = NO(3)(-) for (4)). The use in the same reaction conditions of 4,4'-bipyridine (4,4'-bipy) as connector led to the chain complex [{Cu(μ-4,4'-bipy)(0.5)(μ-L)}(2)Cu(H(2)O)(2n)](ClO(4))(2)·17H(2)O (5). The structure of the centrosymmetric trinuclear unit in (1)-(5) consists of two [Cu(L)] fragments connected through two phenoxo bridging groups to the central copper(II) ion giving rise to a linear arrangement of the copper(II) ions, where the ligand acts in a compartmental form wrapping the metal centre with a N(2)O(2) tetradentate bridging mode. The coordination polyhedron of the symmetrically related external copper atoms exhibits a geometry very close to square-pyramidal, whereas the central copper(II) atom displays either a tetragonally elongated octahedral geometry or a square-planar geometry. Owing to the steric hindrance promoted by the methoxy groups at the phenyl rings, the whole Cu(3) structure is not planar but folded along the line connecting the phenoxo bridging oxygen atoms of the same ligand. Temperature dependence of the magnetic susceptibility of complexes (1)-(5) was measured, showing strong antiferromagnetic interactions between the central and external atoms through the bis(μ-phenoxo) groups. DFT calculations were also performed (a) to support the experimental values of the coupling constant (J(1)) between the nearest-neighbouring copper atoms, (b) to determine the magnitude of the interactions between next-nearest copper(II) atoms (J(2)) and (c) to study magneto-structural correlations for this kind of bis(μ-diphenoxo) trinuclear copper(II) complex.  相似文献   

17.
The binuclear phosphine complex [Fe(2)Cp(2)(μ-CO)(2)(CO)(PH(2)Ph)] (Cp = η(5)-C(5)H(5)) reacted with the acetonitrile adduct [Fe(2)Cp(2)(μ-CO)(2)(CO)(NCMe)] in dichloromethane at 293 K to give the trinuclear hydride-phosphinidene derivative [Fe(3)Cp(3)(μ-H)(μ(3)-PPh)(CO)(4)] as a mixture of cis,anti and trans isomers (Fe-Fe = 2.7217(6) ? for the cis,anti isomer). In contrast, photochemical treatment of the phosphine complex with [Fe(2)Cp(2)(CO)(4)] gave the phosphide-bridged complex trans-[Fe(3)Cp(3)(μ-PHPh)(μ-CO)(2)(CO)(3)] as the major product, along with small amounts of the binuclear hydride-phosphide complexes [Fe(2)Cp(2)(μ-H)(μ-PHPh)(CO)(2)] (cis and trans isomers), which are more selectively prepared from [Fe(2)Cp(2)(CO)(4)] and PH(2)Ph at 388 K. The photochemical decarbonylation of either of the mentioned triiron compounds led reversibly to three different products depending on the reaction conditions: (a) the 48-electron phosphinidene cluster [Fe(3)Cp(3)(μ-H)(μ(3)-PPh)(μ-CO)(2)] (Fe-Fe = 2.592(2)-2.718(2) ?); (b) the 50-electron complex [Fe(3)Cp(3)(μ-H)(μ(3)-PPh)(μ-CO)(CO)(2)], also having carbonyl- and hydride-bridged metal-metal bonds (Fe-Fe = 2.6177(3) and 2.7611(4) ?, respectively); and (c) the 48-electron phosphide cluster [Fe(3)Cp(3)(μ-PHPh)(μ(3)-CO)(μ-CO)(2)], an isomer of the latter phosphinidene complex now having three intermetallic bonds (Fe-Fe = 2.5332(8)-2.6158(8) ?).  相似文献   

18.
The reaction between Ru3(3-2-PhC2C=CPh)(-dppm)(CO)8 and Co2(CO)8 afforded dark red Co2Ru3(4-C2Ph)(3-C2Ph)(-dppm)(-CO)2(CO)9, shown by an X-ray structure determination to contain a strongly twisted Co2Ru3 bow-tie cluster (central Co), to which two PhC2 units derived from cleavage of the original diyne are attached. One a these is strongly interacting with four metal atoms, the other being attached in the familiar 1,22-mode. The dppm ligand remains bridging two of the Ru atoms.  相似文献   

19.
The complex Fe2Rh(μ-H)(μ3-COCH3)(CO)7(η-C5H5) prepared by treatment of Fe3(μ-H)(μ-COCH3)(CO)10 with Rh(CO)2 (η-C5H5), has been examined by single crystal X-ray diffraction. The compound crystallises in the monoclinic space group C2/c (No. 15) with a 25.409(2), b 8.129(1), c 17.044(1) Å, β 103.744(6)°, V 3419.6(6) Å3 and Dc 2.02 g cm−3 for Z = 8 and M = 519.8. Data were collected for 2° ⩽ θ ⩽ 30° with graphite monochromated X-radiation (Mo-Kα) using an Enraf-Nonius CAD4-F diffractometer. The structure was refined to R = 0.025 (Ritw = 0.037) for 3557 observed [I ⩾ 3(σI)], absorption corrected data. The complex contains an asymmetrically bonded methoxymethylidyne ligand capping an Fe2Rh triangular face (Fe(1)-C(8) 1.863(3), Fe(2)-C(8) 1.881(3), Rh-C(8), 2.211(3) Å). The terminal carbonyl ligand on the rhodium atom shows slight semi-bridging interactions with the two iron atoms (Fe(1) … C(7) 2.888(4), Fe(2) … C(7), 2.769(4) Å, Rh-C(7)-O(7) 169.1(4)°. The iron—iron vector is spanned by a (directly located) μ-hydride ligand. Variable temperature 13C NMR studies reveal fluxional behaviour, including a temperature dependence both of the alkylidyne carbon chemical shift (δ 323.5 at +80°C, δ 319.2 at −90°C) and its 103Rh coupling constant (1J(Rh-C) 23 Hz at −90°C, 26 Hz at +80°C). These data suggest an increased interaction of the ‘semi-μ3’ alkylidyne ligand with the rhodium centre at higher temperatures, primarily associated with the highest energy fluxional process. Extended Hückel MO calculations on this complex allow a rationalisation of the ‘semi-μ3’ nature of the COCH3 group.  相似文献   

20.
The [Fe443-C(CH3)C(R)C(R′)(μ-CO)2(CO)9] cluster anions have been obtained by the reaction of the Fe43-CCH3)(CO)12 anion with RCCR alkynes in boiling 3-pentanone. In the cases in which R = R′ = C6H5 or CH3, and R = H, R′ = C6H5 or t-Bu, only one isomer has been detected. In the case in which R = CH3, and R′ = C6H5, two isomers with the C(CH3)C(C6H5)C(CH3) and C(CH3)C(CH3)C(C6H5) fragments have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号