共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between poly(ethylene glycol) (PEG) and water was studied by differential scanning calorimetry (DSC). The DSC curves of PEG–water systems were classified into three groups according to the difference in molecular weight. The melting peaks of eutectic mixture appeared for PEG with molecular weight higher than 1000. The eutectic point temperature shifted to higher temperatures and the eutectic point composition shifted to lower concentrations of PEG with increasing molecular weight. The maximum hydration number per ethylene glycol (EG) unit was estimated as 1.6, 2.4, and 3.3 for samples with molecular weights 400, 1540, and 70,000, respectively. No thermal change was found in PEG1540‐water system for a narrow weight fraction range of 0.585–0.605 for overall measuring temperatures due to perfect supercooling. The glass transition temperature shifted to higher temperatures with increasing molecular weight of PEG. A modified Flory–Huggins equation was used to fit curves for experimental liquidus data in phase diagrams. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 496–506, 2001 相似文献
2.
B. García‐Gaitn M. Del P. Prez‐Gonzlez A. Martínez‐Richa G. Luna‐Brcenas S. M. Nuo‐Donlucas 《Journal of polymer science. Part A, Polymer chemistry》2004,42(17):4448-4457
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004 相似文献
3.
Qin Lin Serkan Unal Ann R. Fornof Yuping Wei Huimin Li R. Scott Armentrout Timothy E. Long 《Macromolecular Symposia》2003,199(1):163-172
Linear and branched poly(ethylene terephthalate) (PET) copolymers with polyethylene glycol) (PEG) methyl ether (700 or 2000 g/mol) end groups were synthesized using conventional melt polymerization. DSC analysis demonstrated that low levels of PEG end groups accelerated PET crystallization. The incorporated PEG end groups also decreased the crystallization temperature of PET dramatically, and copolymers with a high content of PEG (>17.6 wt%) were able to crystallize at room temperature. Rheological analysis demonstrated that the presence of PEG end groups effectively decreased the melt viscosities and facilitated melt processing. XPS and ATR-FTIR revealed that the PEG end groups tended to aggregate on the surface, and the surface of compression molded films containing 34.0 wt% PEG were PEG rich (85 wt% PEG). PEG end-capped PET (34.0 wt% PEG) and PET films were immersed into a fibrinogen solution (0.7 mg/mL BSA) for 72 h to investigate the propensity for protein adhesion. XPS demonstrated that the concentration of nitrogen (1.05%) on the surface of PEG endcapped PET film was statistically lower than PET (7.67%). SEM analysis was consistent with XPS results, and revealed the presence of adsorbed protein on the surface of PET films. 相似文献
4.
A series of multiblock poly(ether urethane)s comprising poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG) segments were synthesized. Their aqueous solutions exhibited thermogelling behavior at critical gelation concentrations (CGC) ranging from 8 to 12 wt%. The composition and structural information of the copolymers were studied by GPC and 1H NMR. The critical micellization concentration (CMC) and thermodynamic parameters for micelle formation were determined at different temperatures. The temperature response of the copolymer solutions were studied and found to be associated with the composition of the copolymers. 相似文献
5.
6.
Ahmed Mohammed Oun 《先进技术聚合物》1995,6(2):100-103
The effect of poly(ethylene glycol) (PEG) 4000 on the corrosion of zinc-plated steel in H2SO4 has been investigated over a wide range of conditions. It was found that the corrosion rate depends upon exposure time. The rate of corrosion goes down rapidly to reach a low value, which is an almost constant value within 5 hr under most conditions. This trend was also found by Growock and Lopp for the inhibition of steel corrosion in HCl with 3-phenyl-2-propyl-1-ol. Other workers have linked this slow fall-off in the corrosion rate to film formation. The corrosion rate was found to decrease slowly with increasing PEG concentration, and to increase slowly with acid concentration for all conditions. The effect of temperature on corrosion rate was found to be similar to that of acid concentration. The corrosion rate decreased exponentially with poly(ethylene glycol) concentration. The percentage inhibition reached a value of 48.93 for a PEG concentration of 4 ppm: to double this, the concentration had to be increased to 40,000 ppm. Sulphuric acid titration against sodium hydroxide showed no change in acid concentration during the corrosion protection process, thus supporting the film protection theory 相似文献
7.
Narendra Vyavahare Joachim Kohn 《Journal of polymer science. Part A, Polymer chemistry》1994,32(7):1271-1281
A group of new, water-soluble poly(ether-urethane)s, derived from poly(ethylene glycol) and the amino acid L -lysine, provide pendent carboxylic acid groups along the polymer backbone at regular intervals. The carboxylic acid groups were utilized for the attachment of acrylate and methacrylate pendent chains (hydroxyethyl acrylate, hydroxyethyl methacrylate, aminoethyl methacrylate, and aminoethyl methacrylamide), leading to functionalized polymers. The pendent chains were attached via ester and/or amide bonds having different degrees of hydrolytic stability. The attachment reactions proceeded with high yields (up to 95%). The functionalized polymers were subsequently photopolymerized (UV irradiation) to obtain crosslinked hydrogels. Crosslinked membranes with the highest degree of mechanical strength were obtained when the crosslinking reaction was performed in dioxane with benzoin methyl ether (0.1 wt %) as the initiator. the crystallinity, thermomechanical properties, and hydrolytic stability of the crosslinked membranes were studied. All membranes were transparent and highly swellable (equilibrium water content: 64–88%). The tensile strength in the swollen state ranged from 0.15 to 1.09 MPa. Under physiological conditions (phosphate buffered water, 0.1M, pH 7.4, 37°C) the hydrolytic stability of the hydrogels varied depending on the bonds used in the attachment of the acrylate pendent chains: Hydrogels with hydroxyethyl acrylate pendent chains dissolved within 30 days, while hydrogels containing aminoethyl methacrylamide pendent chains remained unchanged throughout a 30 day period. Using high molecular weight FITC-dextrans as model compounds, complete release from the swollen hydrogels required between 60 and 150 h. Overall, the evaluation of poly(ethylene glycol)-lysine derived, photocrosslinked hydrogels indicated that these materials provide a range of potentially useful properties. © 1994 John Wiley & Sons, Inc. 相似文献
8.
叶酸和聚乙二醇接枝作基因载体用壳聚糖的合成与表征 总被引:3,自引:0,他引:3
本研究将叶酸和聚乙二醇接枝到四种不同分子量的壳聚糖氨基侧链上,以改善壳聚糖的靶向性和水溶性作基因载体。用FTIE、1HNMR、UV-Vis、DSC和TEM对产物进行了表征,结果表明,叶酸和聚乙二醇被成功地接枝到壳聚糖上,所制得的载体有望作为潜在的肿瘤细胞靶向基因载体。 相似文献
9.
《先进技术聚合物》2018,29(9):2467-2476
Poly (caprolactone) membranes with addition of different poly (ethylene glycol) concentrations were prepared for separation of water/isopropanol azeotropic mixture by pervaporation process. Different characterization tests including Fourier transform infrared, scanning electron microscopy, water contact angle, and thermogravimetric analysis were carried out on the prepared membranes. In addition, the effect of poly (ethylene glycol) PEG content on the swelling degree and the performance of the prepared membranes in pervaporation process were investigated. According to the obtained results, all the membranes were water selective and the blend membrane containing 3 wt% PEG exhibited the best pervaporation performance with a water flux of 0.517 kg/m2 hour and separation factor of 1642 at the ambient temperature. Hydrophilicity improvement of the blend membranes was confirmed by constant decrease in water contact angle of the membranes as PEG content increased in the casting solution. Scanning electron microscopy cross‐sectional images indicated that the blend membranes containing PEG had a closed cellular structure. Furthermore, mechanical and thermal properties of the membranes decreased by adding PEG. 相似文献
10.
Masaru Kawakami Katherine Byrne Bhavin S Khatri Tom C B McLeish D Alastair Smith 《Chemphyschem》2006,7(8):1710-1716
The viscoelastic properties of single poly(ethylene glycol) (PEG) molecules were measured by analysis of thermally and magnetically driven oscillations of an atomic force microscope (AFM) cantilever/molecule system. The molecular and monomer stiffness and friction of the PEG polymer were derived using a simple harmonic oscillator (SHO) model. Excellent agreement between the values of these two parameters obtained by the two approaches indicates the validity of the SHO model under the experimental regimes and the excellent reproducibility of the techniques. A sharp minimum in the monomeric friction is seen at around 180 pN applied force which we propose is due to a force induced change in the shape of the energy landscape describing the conformational transition of PEG from a helical to a planar state, which in turn affects the timescale of the transition and therefore modifies the measured internal friction. A knowledge of the viscoelastic response of PEG monomers is particularly important since PEG is widely used as a linker molecule for tethering groups of interest to the AFM tip in force spectroscopy experiments, and we show here that care must be exercised because of the force-dependent viscoelastic properties of these linkers. 相似文献
11.
Guorong Duan Xin Wang Guohong Huang Ying Gong Aimei Li Xujie Yang 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(9):688-691
A new discovery describing nonionic surfactant poly(ethylene glycol) being added into deionized water, electrical conductivity of the water would show a remarkable increase phenomenon. The mechanism study indicated that the electrical conductivity increase of the water doped some PEG was formed by super-polarization of a PEG molecule on the water molecule. A PEG molecule can form a super polarization body in the water, which will generate a strong polarization effect on the water molecule, thereby increasing water ionization degree and makes the electrical conductivity of water greater. 相似文献
12.
Jinfeng Xing Liandong Deng Chaopeng Xie Li Xiao Yinglei Zhai Fengmin Jin Yimei Li Anjie Dong 《先进技术聚合物》2011,22(5):669-674
A series of amphiphilic triblock copolymers, methoxy poly(ethylene glycol)‐b‐poly(octadecanoic anhydride)‐b‐methoxy poly(ethylene glycol) (mPEG‐b‐POA‐b‐mPEG), were prepared via melt polycondensation of methoxy poly(ethylene glycol) (mPEG) and poly(octadecanoic anhydride) (POA). mPEG‐b‐POA‐b‐mPEG were characterized by FTIR, 1H‐NMR, GPC, DSC, and XRD. Drug‐loaded mPEG‐b‐POA‐b‐mPEG nanoparticles (NPs) with spherical morphology and narrow size polydispersity index were prepared by nanoprecipitation technique with paclitaxel as the model drug. In vitro release behaviors of drug‐loaded NPs present that the biphasic process and the release mechanism of each phase are zero order drug releases. According to this study, mPEG‐b‐POA‐b‐mPEG NPs could serve as suitable delivery agents for paclitaxel and other hydrophobic drugs. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
13.
Gao Bo Bengt Wessln K. Bodil Wesslen 《Journal of polymer science. Part A, Polymer chemistry》1992,30(9):1799-1808
Comb-shaped amphiphilic graft copolymers composed of hydrophobic backbones and hydrophilic side chains were prepared by radical copolymerization of poly(ethylene glycol) monomethacrylate macromonomers, and methacrylate and acrylate comonomers in toluene. The copolymerizations were very sensitive to the reaction conditions, and insoluble cross-linked gels were easily formed. The yields of soluble copolymers were affected by the initiator concentration, the macromonomer concentration, and the choice of chain transfer agents and comonomers. Solubilities of the copolymers in water or methanol were found to depend on the sizes and the numbers of the PEG side chains. The copolymers showed surface activity with CMC:s in the order of 0.1–1.5 g/L and surface tensions of 36–56 dyn/cm. When tested as emulsifiers most of the copolymers gave oil-in-water type emulsions at room temperature. Polymers carrying MPEG 2000 side chains were crystalline with melting points of 38–44°C, while those based on PEG 400 and 1000 were mostly amorphous with glass transition temperatures between -55 and -60°C. © 1992 John Wiley & Sons, Inc. 相似文献
14.
Yasuhide Nakayama Takehisa Matsuda 《Journal of polymer science. Part A, Polymer chemistry》1993,31(13):3299-3305
This article reports a new fixation method for hydrophilic layers on substrates. The method is based on the photochemistry of the cinnamate group, which is capable of intermolecular dimerization upon ultraviolet (UV) light irradiation. The method used was as follows. First, two photoreactive polymers were sequentially coated on a polymeric surface: a polycinnamate as an adhesive layer and a cinnamated poly(ethylene glycol) (PEG) as a hydrophilic layer. Subsequently the surface was exposed to UV light. No delamination occurred upon washing with water and methanol; the photoreactive PEG was chemically bonded onto the surface via the polycinnamate. The higher the molecular weight of PEG, the higher the wettability of the surface was formed. Minimal cell adhesion was observed on such a surface. The biomedical applications of the method are discussed. © 1993 John Wiley & Sons, Inc. 相似文献
15.
K. J. Lee D. Y. Moon O. O. Park Y. S. Kang 《Journal of Polymer Science.Polymer Physics》1992,30(7):707-716
Diffusion coefficients of ethylene glycol (EG) have been measured in poly(ethylene terephthlate) (PET) melts by a quartz-spring sorption apparatus. A simple mathematical model was developed to investigate the sorption behavior accompanied by chemical reactions of EG and PET at high temperatures. Diffusion coefficients are deduced from experimental data for an asymptotically thin sample in order to minimize the effects of reactions. The diffusion coefficient of EG is strongly dependent on the vapor pressure of EG and temperature but not on the molecular weight of PET in this experimental range (degree of polymerization 80–120). The diffusion coefficient of EG in PET melt at 265°C is 2.58 × 10?7 cm2/s at the limit of zero concentration of EG. The activation energy for diffusion is 38.4 kcal/gmol, and the heat of solution for sorption is ?44.9 kcal/gmol. The concentrations of the volatile materials resulting from reactions in PET-EG system were analyzed with gas chromatography. In addition, a fit of the current model to experimental data yields frequency factors for the polymerization reaction (k1) and the acetaldehyde formation reaction (k2) to be 5.84 × 108 cm3/mol ? min and 3.90 × 1011 min?1, respectively. 相似文献
16.
Rodolphe Obeid Tracy Armstrong Xiaoju Peng Karsten Busse Jörg Kressler Carmen Scholz 《Journal of polymer science. Part A, Polymer chemistry》2014,52(2):248-257
Poly(ethylene glycol) (PEG) is often used to biocompatibilize surfaces of implantable biomedical devices. Here, block copolymers consisting of PEG and l ‐cysteine‐containing poly(amino acid)s (PAA's) were synthesized as polymeric multianchor systems for the covalent attachment to gold surfaces or surfaces decorated with gold nanoparticles. Amino‐terminated PEG was used as macroinitiator in the ring‐opening polymerization, (ROP), of respective amino acid N‐carboxyanhydrides (NCA's) of l ‐cysteine (l ‐Cys), l ‐glutamate (l ‐Glu), and l ‐lysine (l ‐Lys). The resulting block copolymers formed either diblock copolymers, PEG‐b‐p(l ‐Glux‐co‐l ‐Cysy) or triblock copolymers, PEG‐b‐p(l ‐Glu)x‐b‐p(l ‐Cys)y. The monomer feed ratio matches the actual copolymer composition, which, together with high yields and a low polydispersity, indicates that the NCA ROP follows a living mechanism. The l ‐Cys repeat units act as anchors to the gold surface or the gold nanoparticles and the l ‐Glu repeat units act as spacers for the reactive l ‐Cys units. Surface analysis by atomic force microscopy revealed that all block copolymers formed homogenous and pin‐hole free surface coatings and the phase separation of mutually immiscible PEG and PAA blocks was observed. A different concept for the biocompatibilization of surfaces was followed when thiol‐terminated p(l ‐Lys) homopolymer was first grafted to the surface and then covalently decorated with HOOC‐CH2‐PEG‐b‐p(Bz‐l ‐Glu) polymeric micelles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 248–257 相似文献
17.
Yan‐Xin Liu Zhong‐Jie Du Yan Li Chen Zhang Cong‐Ju Li Xiao‐Ping Yang Hang‐Quan Li 《Journal of polymer science. Part A, Polymer chemistry》2006,44(23):6880-6887
Multiwall carbon nanotube (MWNT) was grafted with polyacrylate‐g‐poly (ethylene glycol) via the following two steps. First, hydroxyl groups on the surface of acid‐treated MWNT reacted with linear poly(acryloyl chloride) to generate graft on MWNT; secondly, the remaining acryloyl chloride groups were subjected to esterification with poly(ethylene glycol) leading the grafted chains on the surface of MWNTs. Thus obtained grafted MWNT was characterized using Fourier transform infrared spectrometer, transmission electron microscopy, and X‐ray photoelectron spectroscopy. Thermogravimetric analysis showed that the weight fraction of grafted polymers amounted to 80% of the modified MWNT. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6880–6887, 2006 相似文献
18.
Ming‐Qing Chen Akio Kishida Takeshi Serizawa Mitsuru Akashi 《Journal of polymer science. Part A, Polymer chemistry》2000,38(10):1811-1817
Polymeric nanospheres consisting of poly(methyl methacrylate) (PMMA) cores and poly(ethylene glycol) (PEG) branches on their surfaces were prepared by free radical copolymerization of methyl methacrylate (MMA) with PEG macromonomers in ethanol/water mixed solvents. PEG macromonomers having a methacryloyl (MMA‐PEG) and p‐vinylbenzyl (St‐PEG) end group were used. It has become clear that the obtained polymer dispersions form three kinds of states, particle dispersion (milky solution), clear solution, and gel/precipitation. It was found that the reaction parameters such as MMA concentration, molecular weight, and concentration of PEG macromonomers, and water content can affect nanosphere formation in a copolymerization system. The water volume fraction of mixed ethanol/water solvents affected the particle size of the nanospheres. These differences in the formation of nanospheres were due to the solvophilic/solvophobic balance between the copolymers and solvents during the self‐assembling process of the copolymers. The sizes of nanospheres can be controlled by varying concentration of PEG macromonomer and water content in solvents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1811–1817, 2000 相似文献
19.
Pious Kurian Joseph P. Kennedy 《Journal of polymer science. Part A, Polymer chemistry》2002,40(18):3093-3102
The synthesis and characterization of novel tricomponent networks consisting of well‐defined poly(ethylene glycol) (PEG) and poly(dimethylsiloxane) (PDMS) strands crosslinked and reinforced by poly(pentamethylcyclopentasiloxane) (PD5) domains are described. Network synthesis occurred by dissolving α,ω‐diallyl PEG and α,ω‐divinyl PDMS prepolymers in a common solvent (toluene), introducing a stoichiometric excess of pentamethylcyclopentasiloxane (D5H) to the charge, inducing the cohydrosilation of the prepolymers by Karstedt's catalyst and completing network formation by the addition of water. Water in the presence of the Pt‐based catalyst oxidizes the SiH groups of D5H to SiOH functions that immediately polycondense and bring about crosslinking. The progress of cohydrosilation and polycondensation was followed by monitoring the disappearance of the SiH and SiOH functions by Fourier transform infrared spectroscopy. Because cohydrosilation and polycondensation are essentially quantitative, overall network composition can be controlled by calculating the stoichiometry of the three network constituents. The very low quantities of extractable (sol) fractions corroborate efficient crosslinking. The networks swell in both water and hexanes. Differential scanning calorimetry showed three thermal transitions assigned, respectively, to PEG (melting temperature: 46–60 °C depending on composition), PDMS [glass‐transition temperature (Tg) = ~?121 °C], and PD5 (Tg = ~?159 °C) and indicated a phase‐separated tricomponent nanoarchitecture. The low Tg of the PD5 phase is unprecedented. The strength and elongation of PEG/PD5/PDMS networks can be controlled by overall network composition. The synthesis of networks exhibiting sufficient mechanical properties (tensile stress: 2–5 MPa, elongation: 100–800%) for various possible applications has been demonstrated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3093–3102, 2002 相似文献
20.
An amphiphilic dendrimer (DPEA-PEG) grafting polyethylene glycol at the terminals was prepared by endcapping of dendritic poly(ether-amide) (DPEA) with isocyanate terminated linear polyethylene glycol (PEG-NCO). The molecular structure was verified by gel permeation chromatography (GPC), 1H NMR and FT-IR. The micelle characteristic of DPEA-PEG in water was investigated. The critical micelle concentration (CMC) was determined by a fluorescence technique to be 55.5 mg/L. The hydrodynamic radius of micelles was measured by dynamic light scattering (DLS) to be 76.2 nm. The UV–vis spectrum showed that the solubility of salicylic acid increased from 1.91 to 2.78 mg/L when the concentration of DPEA-PEG attained 5 mg/mL in an aqueous solution. 相似文献