首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Introduction of a sample into the separation column (microchip channel) in capillary zone electrophoresis (microchip electrophoresis) will cause a disturbance in the originally uniform composition of the background electrolyte. The disturbance, a system zone, can move in some electrolyte systems along the separation channel and, on reaching the position of the detector, cause a system peak. As shown by the linear theory of electromigration based on linearized continuity equations formulated in matrix form, the mobility of the system zone--the system eigenmobility--can be obtained as the eigenvalue of the matrix. Progress in the theory of electromigration allows us to predict the existence and mobilities of the system zones, even in very complex electrolyte systems consisting of several multivalent weak electrolytes, or in micellar systems (systems with SDS micelles) used for protein sizing in microchips. The theory is implemented in PeakMaster software, which is available as freeware (www.natur.cuni.cz/gas). The linearized theory also predicts background electrolytes having no stationary injection zone (water zone, water gap, water dip, EO zone) or unstable electrolyte systems exhibiting oscillations and creating periodic structures. The oscillating systems have complex system eigenmobilities (eigenvalues of the matrix are complex). This paper reviews the theoretical background of the system peaks (system eigenpeaks) and gives practical hints for their prediction and for preparing background electrolytes not perturbed by the occurrence of system peaks and by excessive peak broadening.  相似文献   

2.
3.
The intensity of system (or eigen) peaks encountered in capillary zone electrophoresis (CZE) can be predicted by considering mass balances for each of the analyte constituents and each of the constituents in the background electrolyte (BGE). As a result of coherence, in each zone the proportions in which the constituent concentrations vary are fixed; they are determined by the composition of the BGE and the nature of the analyte constituent (if present) and described as eigenvectors of a transport matrix. Considering the effect of an injection, the mass balances for all constituents can be satisfied only via the intensity of each zone. This leads to an n-equations, n-unknowns problem, with the intensities as the unknowns and the mass balances as equations.The latter can be easily solved to obtain the intensities of the zones, of analytes as well as of system peaks. In this work the approach has been applied to CZE systems with two co-ions in the BGE, and experimental results have been compared to the predictions obtained from the model. Agreement was seen to be reasonable, but the quantitative comparison often failed, probably due to experimental difficulties.  相似文献   

4.
Artificial neural networks (ANNs) were successfully developed for the modeling and prediction of electrophoretic mobility of a series of sulfonamides in capillary zone electrophoresis. The cross-validation method was used to evaluate the prediction ability of the generated networks. The mobility of sulfonamides as positively charged species at low pH and negatively charged species at high pH was investigated. The results obtained using neural networks were compared with the experimental values as well as with those obtained using the multiple linear regression (MLR) technique. Comparison of the results shows the superiority of the neural network models over the regression models.  相似文献   

5.
Summary Eighteen peptides have been modeled. From the volumetric data derived, and published mobilities, the relationship between electrophoretic mobility (μep) and the hydrodynamic radius(r) has been examined. Objective testing with respect to size has been achieved by the log-log version of generalized relationship. (1) From the gradient of the plot versus log r(2.02) there is good support for the inverse square law (μep α 1/r2). Equivalent calculations using molecular weight (Mr) and the number of amino acid residues (n) similarly lead to μep α 1/M r 2/3 and μep α 1/n2/3, respectively. However, the strength of the correlation is diminished as the precision of the representation of size is degraded. (2) An examination of the effect of size at fixed charge and a statistical analysis of the charge distribution on the peptides leads to the conclusion that deviations from the averaged behaviour arise from a charge-induced volumetric effect. Taken together, (1) and (2) indicate that whilst net charge and total size can describe average electrophoretic behaviour well, these parameters are inadequate to describe the specific mobilities of individual analytes. Objective analysis of alkylpyridine data indicates μep α 1/rx where x=2.6–2.8 (depending upon the nature of the r values utilized), but is certainly ≠1 as may have been presumed. A very small range of values may be responsible for this surprising result.  相似文献   

6.
Summary In High Voltage Capillary Zone Electrophoresis a field is applied across a narrow bore capillary filled with electrolyte solution. An electroendosmotic (EEO) flow is generated within this capillary which sweeps solutes along the tube. An absolute method of flow estimation is described, along with some operating parameter effects on the solute mobility. System parameters enabling flow direction reversal and a zero flow are described. The use of several capillaries simultaneously and the effect of pH on EEO flow rates are also shown. Effects of various operating parameters on solute resolution are also detailed.  相似文献   

7.
This paper illustrates the possibilities of chemometric methods in the resolution and quantification of various compounds in overlapping peaks from capillary electrophoresis. Ebrotidine and most of its metabolites were efficiently separated by capillary zone electrophoresis (CZE) in a fused-silica capillary. However, the procedure was not suitable for the physical separation of the three less ionizable metabolites, which comigrated and overlapped with the electroosmotic flow signal. Multivariate curve resolution based on an alternating least squares procedure was used for their mathematical resolution. For such a purpose, data obtained in the CZE system with a diode array detector, which consisted of UV spectra registered over time, were analyzed. The ebrotidine metabolites were successfully resolved and quantified in synthetic mixtures and urine samples.  相似文献   

8.
9.
《Electrophoresis》2017,38(16):2018-2024
Capillary ITP (CITP) and CZE were applied to the determination of effective charges and ionic mobilities of polycationic antimicrobial peptides (AMPs). Twelve AMPs (deca‐ to hexadecapeptides) containing three to seven basic amino acid residues (His, Lys, Arg) at variable positions of peptide chain were investigated. Effective charges of the AMPs were determined from the lengths of their ITP zones, ionic mobilities, and molar concentrations, and from the same parameters of the reference compounds. Lengths of the ITP zones of AMPs and reference compounds were obtained from their CITP analyses in cationic mode using leading electrolyte (LE) composed of 10 mM NH4OH, 40 mM AcOH (acetic acid), pH 4.1, and terminating electrolyte (TE) containing 40 mM AcOH, pH 3.2. Ionic mobilities of AMPs and singly charged reference compounds (ammediol or arginine) were determined by their CZE analyses in the BGE of the same composition as the LE. The effective charges numbers of AMPs were found to be in the range 1.65–5.04, i.e. significantly reduced as compared to the theoretical charge numbers (2.86–6.99) calculated from the acidity constants of the analyzed AMPs. This reduction of effective charge due to tightly bound acetate counterions (counterion condensation) was in the range 17–47% depending on the number and type of the basic amino acid residues in the AMPs molecules. Ionic mobilities of AMPs achieved values (26.5‐38.6) × 10−9 m2V−1s−1 and in most cases were in a good agreement with the ratio of their effective charges and relative molecular masses.  相似文献   

10.
J L Beckers  P Gebauer  P Bocek 《Electrophoresis》2001,22(17):3648-3658
This paper brings an overview of system zones (SZs) in capillary zone electrophoresis (CZE) and their effects upon the migration of zones of analytes. It is shown that the formation and migration of SZs is an inherent feature of CZE, and that it depends predominantly on the composition of an actual background electrolyte (BGE). One can distinguish between stationary SZs and migrating SZs. Stationary SZs, which move due to the electroosmotic flow only, are induced in any BGE by sample injection. Migrating SZs may be induced by a sample injection in BGEs which show at least one of the following features: (i) BGE contains two or more co-ions, (ii) BGE has low or high pH whereby H+ or OH- act as the second co-ion, and (iii) BGE contains multivalent weak acids or bases. SZs do not contain any analyte and show always BGE-like composition. They contain components of the BGE only and the concentrations of these components are different from their values in the original BGE. Providing that some of the ionic components of the BGE are visible by the detector, the migrating SZs can be detected and they are present as system peaks/dips in the electropherogram. It is shown that a migrating SZ may be characterized by its mobility, and examples are given how this mobility can depend on the composition of the BGE. Further, the effects of the migrating SZs (either visible or not visible by the detector) upon the zones of analytes are presented and the typical disturbances of the peaks (extra broadening, zig-zag form, schizophrenic behavior) are exemplified and discussed. Finally, some conclusions are presented how to cope with the SZs in practice. The proposed procedure is based on the theoretical predictions and/or measurements of the mobilities of SZs and on the so-called unsafe region. Then, such operational conditions should be selected where the unsafe region is outside of the required analytical window.  相似文献   

11.
The system peaks that often appear on electropherograms in anion separation by CE with indirect spectrophotometric detection, negative voltage polarity and cathodic EOF are studied. The system peaks are shown to correspond to the zones with the changed concentration of the BGE constituents; they appear while the zone of each analyte anion passes through the outlet end of the capillary and are transported to the detector by EOF. An equation is suggested for predicting migration times of the system peaks with an error of 1%. The ratios of the system peak area to the analyte peak area are found to amount to 20%. It is shown that it is possible to avoid overlapping of the system peaks and analyte peaks by controlling the EOF velocity owing to hydrodynamic pressure. Using the mathematical simulation of CE shows that the system peaks and baseline shift can result from changing the transference numbers of the BGE ions and analyte ions at the capillary edge. The cases when the system peak may be incorrectly identified as the peak of analyte ion are considered. In order to avoid such errors, some practical recommendations are given.  相似文献   

12.
The effective mobilities of the cationic forms of common amino acids--mostly proteinogenic--were determined by capillary zone electrophoresis in acidic background electrolytes at pH between 2.0 and 3.2. The underivatized amino acids were detected by the double contactless conductivity detector. Experimentally measured effective mobilities were fitted with the suitable regression functions in dependence on pH of the background electrolyte. The parameters of the given regression function corresponded to the values of the actual mobilities and the mixed dissociation constants (combining activities and concentrations) of the compound related to the actual ionic strength. McInnes approximation and Onsager theory were used to obtain thermodynamic dissociation constants (pK(a)) and limiting (absolute) ionic mobilities.  相似文献   

13.
A capillary zone electrophoresis (CZE) method that is specific, simple, rapid and also cheap was developed to analyse some natural UV-absorbing isoxazolinone compounds with toxic potential present in legume seedlings. The six most common natural isoxazolinone compounds were separated within 10 min with 25 mM potassium phosphate (pH 7.5) containing 8% 1-propanol as running buffer. A 60 cm coated fused-silica capillary (52.6 cm effective length x 75 microm I.D.), with an electric field of 375 V/cm at 30 degrees C was used. The limit of detection ranged from 0.01 mM (3.0 microg/ml) to 0.03 mM (7.7 microg/ml). Linearity between peak areas and concentrations ranging from 0.05 mM to 1.75 mM were determined for each isoxazolinone. The correlation coefficient was 0.9954 or greater. Both relative migration time and peak area were reproducible. The RSD of relative migration time is between 0.44 and 1.94% and RSD of peak area is between 1.26 and 6.86%. The concentrations of isoxazolinones in Lathyrus odoratus and L. sativus seedlings obtained by CZE were in agreement with the previous results from HPLC.  相似文献   

14.
15.
Due to the short light path of the capillaries, the CE detection limit based on concentration, is far less than that of HPLC and not sufficient for many practical applications. Several methods, based on different electrophoretic maneuvers, can concentrate the sample (stack) easily on the capillary before the separation step of capillary zone electrophoresis (CZE). These methods incorporate different types of discontinuous buffers as the means for invoking different velocities to the same analyte molecules to produce a sharpening of the band (stacking). In CZE, these buffers can be often very simple such as sample dilution or adding to the sample a high concentration of a fast mobility ion. However, in other applications these buffers can be as complicated as those required for isotachophoresis. Stacking can often yield a concentration factor of 5-30-fold, which can improve greatly in CZE the detection limits bringing them very close to those of HPLC. Different methods of stacking, the importance of discontinuous buffers and the different mechanism for concentration on the capillary are reviewed here. As there is a need for more practical applications, there will be more methods devised for stacking in CZE.  相似文献   

16.
V Dolník 《Electrophoresis》1999,20(15-16):3106-3115
This review article with 125 references describes recent developments in capillary zone electrophoresis of proteins. It encompasses approximately the last two years, from the previous review (V. Dolník, Electrophoresis 1997, 18, 2353-2361) through Spring 1999. Topics covered include modeling of the electrophoretic properties of proteins, sample preconcentration and derivatization, wall coatings, improving selectivity, special detection techniques, and applications.  相似文献   

17.
Zhang Y  Li H  Hou A  Havel J 《Talanta》2005,65(1):118-128
The application of multilayer perceptron artificial neural networks (MLP ANN) based on genetic input selection for quantification of the unresolved peaks in micellar electrokinetic capillary chromatography (MECC) is reported. An optimization strategy for genetic input selection was also proposed. When the corresponding CE peaks cannot be resolved completely only by separation techniques, MLP ANN based on genetic input selection can be a suitable tool to resolve the problem. Both the spectra and the electrophoretograms of the unseparated analytes were used as the multivariate input data. The two kinds of the data were suitable for quantification of overlapped CE peaks by MLP ANN based on genetic input selection. The study also shows that the applying of genetic input selection in MLP ANN can improve the precision of quantification in both completely and partially overlapped CE peaks to some extent.  相似文献   

18.
Gas B  Kenndler E 《Electrophoresis》2004,25(23-24):3901-3912
When working with capillary zone electrophoresis (CZE), the analyst has to be aware that the separation system is not homogeneous anymore as soon as a sample is brought into the background electrolyte (BGE). Upon injection, the analyte creates a disturbance in the concentration of the BGE, and the system retains a kind of memory for this inhomogeneity, which is propagated with time and leads to so-called system zones (or system eigenzones) migrating in an electric field with a certain eigenmobility. If recordable by the detector, they appear in the electropherogram as system peaks (or system eigenpeaks). However, although their appearance can not be forecasted and explained easily, they are inherent for the separation system. The progress in the theory of electromigration (accompanied by development of computer software) allows to treat the phenomenon of system zones and system peaks now also in very complex BGE systems, consisting of several multivalent weak electrolytes, and at all pH ranges. It also allows to predict the existence of BGEs having no stationary injection zone (or water zone, EO zone, gap, dip). Our paper reviews the theoretical background of the origin of the system zones (system peaks, system eigenpeaks), discusses the validity of the Kohlrausch regulating function, and gives practical hints for preparing BGEs with good separation ability not deteriorated by the occurrence of system peaks and by excessive peak-broadening.  相似文献   

19.
In order to correlate/predict electrophoretic mobility data in the mixture of water+organic modifier four equations have been presented and examined. The experimental mobilities of five analytes were determined in a water-methanol mixture. These data have been used to assess the accuracy and predictability of the models. Also, some previously published mobility data in water-organic modifier mixtures has been employed for further evaluation of the models. The models produced accurate results and the means of percentage deviations were in the range of 0.66-1.30.  相似文献   

20.
The use of capillary zone electrophoresis (CZE) and capillary zone electrophoresis/mass spectrometry (CZE/MS) has been demonstrated, in principle, for the separation of nicotine and nicotine metabolites. The buffer system developed for separation and detection by CZE/UV was modified for use in CZE/MS analysis. Several of the metabolites are isobaric and tandem mass spectrometric (MS/MS) techniques have been used to differentiate such analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号