首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The photomechanical motion of chiral crystals of trans‐azobenzene derivatives with an (S)‐ and (R)‐phenylethylamide group was investigated and compared with a racemic crystal. Changes in the UV/Vis absorption spectra of the powdered crystals before and after UV irradiation were measured by using an optical waveguide spectrometer, showing that the lifetime of the cis‐to‐trans thermal back‐isomerization of the chiral crystals was faster than that of the racemic crystals. Upon UV irradiation, a long plate‐like chiral microcrystal bent away from the light source with a twisting motion. A square‐like chiral microcrystal curled toward the light with some twisting. Reversible bending of a rod‐like chiral microcrystal was repeatable over twenty‐five cycles. In contrast, bending of a plate‐like racemic microcrystal was small. A possible mechanism for the bending and twisting motion was discussed based on the optimized cis conformer determined by using calculations, showing that the bending motion with twisting is caused by elongation along the b axis and shrinkage along the a axis.  相似文献   

2.
Cross‐linked liquid‐crystalline (LC) polymers with a mesomorphic diarylethene were prepared to demonstrate a versatile strategy for cross‐linked photochromic LC polymers as photomobile materials. Upon exposure to UV light to cause photocyclization of the diarylethene chromophore, the cross‐linked polymer films bend toward an actinic light source. By irradiation with visible light to cause a closed‐ring to open‐ring isomerization, the bent films revert to the initial flat state. Without visible‐light irradiation, the bent films remain bent even at 120 °C, indicating high thermal stability of the cross‐linked diarylethene LC polymers.  相似文献   

3.
Photoinduced phase transitions caused by photochromic reactions bring about a change in the state of matter at constant temperature. Herein, we report the photoinduced phase transitions of crystals of a photoresponsive macrocyclic compound bearing two azobenzene groups ( 1 ) at room temperature on irradiation with UV (365 nm) and visible (436 nm) light. The trans/trans isomer undergoes photoinduced phase transitions (crystal–isotropic phase–crystal) on UV light irradiation. The photochemically generated crystal exhibited reversible phase transitions between the crystal and the mesophase on UV and visible light irradiation. The molecular order of the randomly oriented crystals could be increased by irradiating with linearly polarized visible light, and the value of the order parameter was determined to be ?0.84. Heating enhances the thermal cis‐to‐trans isomerization and subsequent cooling returned crystals of the trans/trans isomer.  相似文献   

4.
Mixed crystals composed of 1,2-bis(2-methyl-5-(p-methoxyphenyl)-3-thienyl)perfluorocyclopentene (1a) and 1,2-bis(5-methyl-2-(p-methoxyphenyl)-4-thiazolyl)perfluorocyclopentene (2a) were prepared, and their photochromic as well as light-driven bending performance was studied to reveal how shape changes of individual molecules cause the bending response. 1a and 2a molecules, having similar geometrical structures, randomly mix with each other in a single crystal. The absorption spectra of the closed-ring isomers 1b and 2b were, however, distinctly different. The difference of the spectra made it possible to discriminate the cycloreversion reactions of 1b and 2b in the mixed crystals by irradiation with 750 nm light. The bending response of the mixed crystals by the selective photoisomerization revealed that the local shape change of each molecule is additively linked to the macroscopic deformation of the crystals.  相似文献   

5.
Reversible topographical changes were observed on a photochromic diarylethene microcrystalline film surface by alternate irradiation with UV and visible light. Two types of surfaces were prepared from this film: 1) Storage of the film at 30 °C for 24 hours in the dark after UV irradiation afforded a surface that was covered with needle‐shaped crystals, whose diameter and length were approximately 1 μm and 10 μm, respectively, and showed a superhydrophobic lotus effect. 2) Storage of the film at 70 °C for 3 hours in the dark caused the needle‐shaped crystals to be converted into larger rod‐like crystals (5∼8 μm wide and 20∼30 μm long) by Ostwald ripening and a disappearance of the lotus effect. The obtained activation energy of the formation of the needle‐ and rod‐shaped crystals was 143 and 162 kJ mol−1, respectively. Subsequent UV irradiation to the surface, which was followed by storage at 50 °C for 1 hour in the dark, gave a doubly rough structure; small needle‐shaped crystals were formed between the larger rod‐shaped crystals. The surface showed both superhydrophobic properties and the pinned effect of the water droplet: the petal effect. Fractal analysis of both surfaces were carried out using a box‐counting method, and the lotus effect was observed in the presence of smaller‐sized crystals, whilst the petal effect was observed with larger sized crystals (ca. 100 μm). We demonstrated that the hydrophobic property was controlled by the distribution in crystal size of the closed‐ring isomer of the diarylethene. Visible‐light irradiation of both rough surfaces afforded surfaces with cubic‐shaped micro‐crystals of the open‐ring isomer.  相似文献   

6.
Novel photochromic single crystals composed of three different kinds of diarylethenes, 1,2-bis(3,5-dimethyl-2-thienyl)perfluorocyclopentene (1a), 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene (2a), and 1,2-bis(2-methyl-5-p-methoxyphenyl-3-thienyl)perfluorocyclopentene (3a), have been prepared. The three-component crystals turned yellow, orange, red, purple, blue, green, or black upon irradiation with light of appropriate wavelengths. The colors of the crystals were thermally stable in the dark and completely bleached by irradiation with visible light. Such multicolored photochromic crystals have potential for the application to optoelectronic devices, such as multifrequency three-dimensional optical memory media or full-color displays.  相似文献   

7.
Flexible organic single crystals are evolving as new materials for optical waveguides that can be used for transfer of information in organic optoelectronic microcircuits. Integration in microelectronics of such crystalline waveguides requires downsizing and precise spatial control over their shape and size at the microscale, however that currently is not possible due to difficulties with manipulation of these small, brittle objects that are prone to cracking and disintegration. Here we demonstrate that atomic force microscopy (AFM) can be used to reshape, resize and relocate single‐crystal microwaveguides in order to attain spatial control over their light output. Using an AFM cantilever tip, mechanically compliant acicular microcrystals of three N‐benzylideneanilines were bent to an arbitrary angle, sliced out from a bundle into individual crystals, cut into shorter crystals of arbitrary length, and moved across and above a solid surface. When excited by using laser light, such bent microcrystals act as active optical microwaveguides that transduce their fluorescence, with the total intensity of transduced light being dependent on the optical path length. This micromanipulation of the crystal waveguides using AFM is non‐invasive, and after bending their emissive spectral output remains unaltered. The approach reported here effectively overcomes the difficulties that are commonly encountered with reshaping and positioning of small delicate objects (the “thick fingers” problem), and can be applied to mechanically reconfigure organic optical waveguides in order to attain spatial control over their output in two and three dimensions in optical microcircuits.  相似文献   

8.
Flexible organic single crystals are evolving as new materials for optical waveguides that can be used for transfer of information in organic optoelectronic microcircuits. Integration in microelectronics of such crystalline waveguides requires downsizing and precise spatial control over their shape and size at the microscale, however that currently is not possible due to difficulties with manipulation of these small, brittle objects that are prone to cracking and disintegration. Here we demonstrate that atomic force microscopy (AFM) can be used to reshape, resize and relocate single-crystal microwaveguides in order to attain spatial control over their light output. Using an AFM cantilever tip, mechanically compliant acicular microcrystals of three N-benzylideneanilines were bent to an arbitrary angle, sliced out from a bundle into individual crystals, cut into shorter crystals of arbitrary length, and moved across and above a solid surface. When excited by using laser light, such bent microcrystals act as active optical microwaveguides that transduce their fluorescence, with the total intensity of transduced light being dependent on the optical path length. This micromanipulation of the crystal waveguides using AFM is non-invasive, and after bending their emissive spectral output remains unaltered. The approach reported here effectively overcomes the difficulties that are commonly encountered with reshaping and positioning of small delicate objects (the “thick fingers” problem), and can be applied to mechanically reconfigure organic optical waveguides in order to attain spatial control over their output in two and three dimensions in optical microcircuits.  相似文献   

9.
Four polymorphic crystals were obtained by recrystallization of 1,2-bis(2-methyl-5-p-methoxyphenyl-3-thienyl)perfluorocyclopentene (1 a) from hexane. All crystals underwent photochromic reactions upon alternate irradiation with ultraviolet (lambda=370 nm) and visible light (lambda>500 nm). The photocyclization quantum yields were found to be close to unity irrespective of the crystal types, while the photocycloreversion quantum yields were different as much as four times depending on the conformation of the closed-ring isomers in the crystals.  相似文献   

10.
Flexible crystals that can capture solar energy and convert it into mechanical energy are promising for a wide range of applications such as information storage and actuators, but obtaining them remains a challenge. Herein, an elastic crystal of a barbiturate derivative was found to be an excellent candidate, demonstrating plastic bending behavior under natural sunlight irradiation. 1H NMR and high-resolution mass spectrum data of microcrystals before and after light irradiation demonstrated that light-induced [2+2] cycloaddition was the driving force for the photomechanical effects. Interestingly, the crystals retained elastic bending even after light irradiation. This is the first report of flexible crystals that can be driven by natural sunlight and that have both photomechanical properties and elasticity. Furthermore, regulation of the passive light output direction of the crystals and transport of objects by applying mechanical forces and light was demonstrated.  相似文献   

11.
We report a swinging motion of photochromic thin broad sword shaped crystals upon continuous irradiation with UV light. By contrast in thick crystals, photosalient phenomena were observed. The bending and swinging mechanisms are in fact due to molecular size changes as well as phase transitions. The first slight bending away from the light source is due to photocyclization-induced surface expansion, and the second dramatic bending toward UV incidence is due to single-crystal-to-single-crystal (SCSC) phase transition from the original phase I to phase IIUV. Upon visible light irradiation, the crystal returned to phase I. A similar SCSC phase transition with a similar volume decrease occurred by lowering the temperature (phase IIItemp). For both photoinduced and thermal SCSC phase transitions, the symmetry of the unit cell is lowered; in phase IIUV the twisting angle of disordered phenyl groups is different between two adjacent molecules, while in phase IIItemp, the population of the phenyl rotamer is different between adjacent molecules. In the case of phase IIUV, we found thickness dependent photosalient phenomena. The thin broad sword shaped crystals with a 3 μm thickness showed no photosalient phenomena, whereas photoinduced SCSC phase transition occurred. In contrast, large crystals of several tens of μm thickness showed photosalient phenomena on the irradiated surface where SCSC phase transition occurred. The results indicated that the accumulated strain, between isomerized and non-isomerized layers, gave rise to the photosalient phenomenon.

We report a swinging motion of photochromic thin broad sword shaped crystals upon continuous irradiation with UV light.  相似文献   

12.
The photoresponse of diarylethene crystals is found to depend on the intensity of UV light, that is, photoinduced bending is switched to photosalient phenomena by increasing the light intensity. The change in the size of the crystal unit cell upon UV irradiation is larger for asymmetric diarylethenes with thiazole and thiophene rings than that for the corresponding symmetric diarylethenes. As a result, the crystals of an asymmetric diarylethene show much more drastic photosalient effects than those of the corresponding symmetric diarylethene crystals upon UV irradiation. It is also found that the crystals of diarylethene, which have not previously been reported to exhibit a photosalient effect, show photosalient phenomena upon irradiation with strong UV light. Furthermore, the dependence of photosalient phenomena on the size and shape of the crystals is reported.  相似文献   

13.
Flexible organic crystals (elastic and plastic) are important materials for optical waveguides, tunable optoelectronic devices, and photonic integrated circuits. Here, we present highly elastic organic crystals of a Schiff base, 1-((E)-(2,5-dichlorophenylimino)methyl)naphthalen-2-ol ( 1 ), and an azine molecule, 2,4-dibromo-6-((E)-((E)-(2,6-dichlorobenzylidene)hydrazono)methyl)phenol ( 2 ). These microcrystals are highly flexible under external mechanical force, both in the macroscopic and the microscopic regimes. The mechanical flexibility of these crystals arises as a result of weak and dispersive C−H⋅⋅⋅Cl, Cl⋅⋅⋅Cl, Br⋅⋅⋅Br, and π⋅⋅⋅π stacking interactions. Singly and doubly-bent geometries were achieved from their straight shape by a micromechanical approach using the AFM cantilever tip. Crystals of molecules 1 and 2 display a bright-green and red fluorescence (FL), respectively, and selective reabsorption of a part of their FL band. Crystals 1 and 2 exhibit optical-path-dependent low loss emissions at the termini of crystal in their straight and even in extremely bent geometries. Interestingly, the excitation position-dependent optical modes appear in both linear and bent waveguides of crystals 1 and 2 , confirming their light-trapping ability.  相似文献   

14.
Simple molybdenum methyl, carbene, and carbyne complexes, [CH3--MoF], [CH2=MoHF], and [CH[triple chemical bond]MoH(2)F], were formed by the reaction of laser-ablated molybdenum atoms with methyl fluoride and isolated in an argon matrix. These molecules provide a persistent photoreversible system through alpha-hydrogen migration between the carbon and metal atoms: The methyl and carbene complexes are produced by applying UV irradiation (240-380 nm) while the carbyne complex is depleted, and the process reverses on irradiation with visible light (lambda>420 nm). An absorption at 589.3 cm(-1) is attributed to the Mo--F stretching mode of [CH3--MoF], which is in fact the most stable of the plausible products. Density functional theory calculations show that one of the alpha-hydrogen atoms of the carbene complex is considerably bent toward the metal atom (angle-spherical HCMo=84.5 degrees ), which provides evidence of a strong agostic interaction in the triplet ground state. The calculated C[triple chemical bond]Mo bond length in the carbyne is in the range of triple-bond values in methylidyne complexes.  相似文献   

15.
Supramolecular crystalline assembly constitutes a rational approach to bioengineer intracellular structures. Here, biocrystals of clofazimine (CFZ) that form in vivo within macrophages were measured to have marked curvature. Isolated crystals, however, showed reduced curvature suggesting that intracellular forces bend these drug crystals. Consistent with the ability of biocrystals to elastically deform, the inherent crystal structure of the principal molecular component of the biocrystals—the hydrochloride salt of CFZ (CFZ‐HCl)—has a corrugated packing along the (001) face and weak dispersive bonding in multiple directions. These characteristics were previously found to be linked to the elasticity of other organic crystals. Internal stress in bent CFZ‐HCl led to photoelastic effects on the azimuthal orientation of polarized light transmittance. We propose that elastic, intracellular crystals can serve as templates to construct functional microdevices with different applications.  相似文献   

16.
YY Wu  W Luo  YH Wang  YY Pu  X Zhang  LS You  QY Zhu  J Dai 《Inorganic chemistry》2012,51(16):8982-8988
Two titanium-oxo-clusters Ti(6)O(4)(o-BDC)(2)(o-BDC(i)Pr)(2)(O(i)Pr)(10) (1) and Ti(6)O(3)(o-BDC)(2)(O(i)Pr)(14) (2) (BDC = benzene dicarboxylate) were prepared by one-step in situ solvothermal synthesis. The compounds are the rare examples of the dicarboxylate-substituted titanium-oxo-clusters. Their crystal structures are successfully measured by single-crystal X-ray analysis. The Ti(6) oxo-clusters of 1 and 2 are constructed by two dual corner-missing cube subunit, Ti(3)O(3). The two subunits are linked by double μ(3)-O bridges for 1 and single μ(2)-O bridge for 2, respectively, and the latter is a new type of carboxylate substituted titanium-oxo-cluster. A photochromic effect was observed upon irradiation of the crystals in the presence of alcohol. The light irradiation changed the color of the crystals from transparent to purple-gray. The Ti(III) signal was detected after the irradiation, and when the sample was exposured in air, superoxide diatomic O(2)(??-) radical was found. Photodegradation of the methyl orange in aqueous dispersions of microcrystals of the cluster 2 was carried out under UV cut white light with the assistance of H(2)O(2).  相似文献   

17.
弯曲形偶氮苯液晶由于其偶氮键独特的光致可逆异构化性能,已成为光电子信息材料研究的热门课题,但光响应速度慢已成为制约其发展的关键因素.目前报道的弯曲型偶氮类液晶化合物的偶氮键都距离中心核较远的位置,光致异构的响应时间较长,大都在分钟以上,不利于光敏器件应用研究.本工作试图以2-甲基-1,3-间苯二胺为中心核,将偶氮键紧挨中心核两边,末端为直链烷基,设计合成了一系列新型弯曲形双偶氮苯类液晶化合物,以期缩短光响应时间.通过IR, 1H NMR, 13C NMR和ICP-MS光谱鉴定这些化合物的分子结构,经差示扫描量热仪(DSC)和偏光显微镜(POM)测定其液晶相变温度和相态织构;并通过测定2-甲基-1,3-双(4-((4-庚基苯基)酯基)-1-(E)-偶氮苯基)苯(2c)的紫外-可见光的吸收光谱研究其光致异构化性能,通过UV-Vis光谱仪和偏光显微镜(POM)测定其液晶化合物以及掺杂向列相液晶材料的光致异构现象和响应时间.实验结果表明,所有设计合成的弯曲形双偶氮苯类液晶化合物均具有近晶相相态,且相态温度范围较宽,当近晶相态化合物2c掺杂到向列相混合液晶中时,其光致异构响应时间为2~3 s,在日光下液晶态恢复时间为3~4s,在乙酸乙酯稀溶液中时10s可达到光稳态.说明这类弯曲形双偶氮液晶化合物具有较快的光致异构响应速度.  相似文献   

18.
研究了用一步水热法制备的不同形貌的钛酸铋(Bi4Ti3O12, BIT)粒子的光学和可见光催化性能, 并对其晶体结构和微观结构用X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等手段进行了表征. XRD结果表明, 所制备的BIT 样品为层状钙钛矿结构. FESEM结果表明, 通过控制水热过程的反应参数可以得到不同形貌的纳米粒子. 紫外-可见漫反射光谱(UV-Vis DRS)表明BIT 样品的带隙能约为2.88-2.93 eV. 利用可见光(λ>420 nm)照射下的甲基橙(MO)降解实验评价了BIT 样品的光催化性能. 结果表明, BIT 的光催化活性比掺氮TiO2 (N-TiO2)高得多. 研究了形貌对BIT 光催化性能的影响. 所制备的BIT纳米带光催化效率最高, 经可见光照射360 min, 甲基橙溶液的降解率可达到95.0%.  相似文献   

19.
Photoreactive polymers containing 2,6-bis(benzylidene)-1-cyclohexanone (bisBC) units were synthesised and investigated as a photoalignment layer for polymerisable liquid crystals (PLCs) and liquid crystalline polymers (LCPs). The liquid crystalline materials were aligned homogeneously on the photoalignment layers in a wide range of irradiation dose of linearly polarised UV light (LPUVL). Specifically, for the photoalignment layer baked at 80°C, order parameters of the liquid crystalline materials were low due to the disturbance of oriented-photoreactive polymer caused by the contact with the solvent of liquid crystalline materials. However, the liquid crystalline materials were aligned homogeneously even at low irradiation doses on the thermally cured photoalignment layer baked at 180°C. In addition, the liquid crystalline materials were aligned perpendicular to the LPUVL electric field. The alignment mechanism is discussed by comparing the retardation of photoalignment layer with anisotropic polarisabilities of model molecules calculated by density functional theory (DFT). It is suggested that the liquid crystalline materials aligned along the unreacted chromophores in the photoreactive polymer.  相似文献   

20.
The influence of the octene content on the photodegradation behaviour of ethylene–octene copolymers (EOCs) was revealed by investigating the photooxidation of low density polyethylene (LDPE) and EOCs with different octene contents through a series of characterisation methods. LDPE was very sensitive to ultraviolet light and the photostabilities of EOCs decreased with increasing octene concentration. The photodegradation of all samples produced hydroxyl, carbonyl and vinyl groups. The ease of chain crosslinking and scission was increased as the octene content rose. Crosslinking predominated in late irradiation period of LDPE while chain scission was dominant in that of EOCs. Annealing and chain scission promoted the secondary crystallisation of the crystallisable chain segments. Chain scission enhanced the crystallisation ability of the irradiated EOCs while it decreased that of the weathered LDPE. The photostabilities of crystals could be ranked as follows: the chain-folded lamellar crystals > the bundled crystals > the fringed micellar crystals. The thermal stabilities and mechanical properties of samples decreased with increasing irradiation time and the decreasing extent was correlated with the comonomer content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号