首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
含与不含晶界空穴的双晶体蠕变行为研究   总被引:1,自引:1,他引:0  
基于晶体滑移理论,建立了各向异性镍基合金双晶体的蠕变本构模型和蠕变寿命预测模型,通过MARC用户子程序CRPLAW将上述本构模型进行了有限元实现,并对双晶体蠕变行为进行了计算分析,考虑了:(1)晶体取向的影响;(2)垂直、倾斜和平行于外载方向的三种位向晶界情况;(3)晶界处引进空间空穴的影响。结果表明,双晶体上特别是微空穴和晶界附近区域的蠕变应力应变呈现不同的变化规律,对此晶粒晶体取向和晶界位向有较大的影响;微空穴的存在削弱了双晶体的承载能力,显著地影响了双晶体蠕变持久寿命;相同条件下,垂直晶界对双晶体模型的蠕变损伤影响最为强烈,倾斜晶界次之,平行晶界最小;微空穴的生长与晶界位向和晶体取向有强烈的依赖关系,其中垂直晶界更有利于晶体滑移和微空穴生长。  相似文献   

2.
Constitutive equations for class of materials that possess granular microstructure can be effectively derived using granular micromechanics approach. The stress–strain behavior of such materials depends upon the underlying grain scale mechanisms that are modeled by using appropriate rate-dependent inter-granular force–displacement relationships. These force–displacement functions are nonlinear and implicit evolutions equations. The numerical solution of such equation under applied overall stress or strain loading can entail significant computational expense. To address the computations issue, an efficient explicit time-integration scheme has been derived. The developed model is then utilized to predict primary, secondary and tertiary creep as well as rate-dependent response under tensile and compressive loads for hot mix asphalt. Further, the capability of the derived model to describe multi-axial behavior is demonstrated through generations of biaxial time-to-creep failure envelopes and rate-dependent failure envelopes under monotonic biaxial and triaxial loading. The advantage of the approach presented here is that we can predict the multi-axial effects without resorting to complex phenomenological modeling.  相似文献   

3.
Effects of non-uniform strains on tensile fracture of fiber-reinforced ceramic–matrix composites have not been satisfactorily explained by existing mechanics-based models. In this paper, we use an exact model of fiber fragmentation under global load sharing conditions to predict fracture in three model problems in which non-uniform strains occur: (i) an end-constrained plate subject to a linear transverse temperature gradient; (ii) an internally-pressurized cylindrical tube with a linear through-thickness temperature gradient; and (iii) a rectangular beam under combined bending and tension. Fracture is assumed to occur when the global load reaches a maximum value. Approximations to the exact fragmentation model are also assessed, with the goal of decoupling the effects of two important parts of the computed stress–strain response: the rate of post-peak strain softening and the magnitude of the plateau “flow” stress once fiber fragmentation is complete. We find that for cases in which the fiber Weibull modulus is low and hence its plateau strength is high relative to its peak and the loading yields a sufficiently high strain gradient, the failure strain lies in the plateau regime. Consequently, the results can be predicted with good accuracy using a perfectly-plastic representation of the post-peak response. In contrast, for cases in which the fiber Weibull modulus is high, the failure strain lies in the softening portion of the curve. Here a linear-softening model is found to yield accurate results. A preliminary assessment of the model has been made by comparing predicted and measured bending/tension strength and failure strain ratios for one specific composite. The correlations appear good, though additional experiments are required in order to critically assess the model predictions over a range of loading scenarios.  相似文献   

4.
A micromechanical model for cohesive materials is derived by considering their underlying microstructure conceptualized as a collection of grains interacting through pseudo-bonds. The pseudo-bond or the inter-granular force–displacement relations are formulated taking inspiration from the atomistic-level particle interactions. These force–displacement relationships are then used to derive the incremental stiffnesses at the grain-scale, and consequently, obtain the sample-scale stress–strain relationship of a representative volume of the material. The derived relationship is utilized to study the stress–strain and failure behavior including the volume change and “brittle” to “ductile” transition behavior of cohesive materials under multi-axial loading condition. The model calculations are compared with available measured data for model validation. Model predictions exhibit both quantitative and qualitative consistency with the observed behavior of cohesive material.  相似文献   

5.
In this paper, we have extended the granular mechanics approach to derive an elasto-plastic stress–strain relationship. The deformation of a representative volume of the material is generated by mobilizing particle contacts in all orientations. Thus, the stress–strain relationship can be derived as an average of the mobilization behavior of these local contact planes. The local behavior is assumed to follow a Hertz–Mindlin’s elastic law and a Mohr–Coulomb’s plastic law. Essential features such as continuous displacement field, inter-particle stiffness, and fabric tensor are discussed. The predictions of the derived stress–strain model are compared to experimental results for sand under both drained and undrained triaxial loading conditions. The comparisons demonstrate the ability of this model to reproduce accurately the overall mechanical behavior of granular media and to account for the influence of key parameters such as void ratio and mean stress. A part of this paper is devoted to the study of anisotropic specimens loaded in different directions, which shows the model capability of considering the influence of inherent anisotropy on the stress–strain response under a drained triaxial loading condition.  相似文献   

6.
使用PVDF涂层建筑膜材制成的结构,在承受外载荷情况下,力学行为非常复杂。在本文中,重点研究其单元结构在承受外载荷情况下的力学性能。首先,对PVDF涂层建筑膜材进行拉伸试验,测定其在常温和低温环境下膜的拉伸力学性能参数。然后,以制成的三角框架结构膜单元为对象,在常温条件下,从有限元分析和实际加载试验两方面计算得出结构单元在均布载荷下的位移、应变和应力分布。最后,对其进行强度验证,得出采用膜单元构建大型建筑是安全的结论。试验方法和结果可以应用于膜建筑结构的设计。  相似文献   

7.
A new crystal plasticity model incorporating the mechanically induced martensitic transformation in metastable austenitic steel has been formulated and implemented into the finite element analysis. The kinetics of martensite transformation is modeled by taking into consideration of a nucleation-controlled phenomenon, where each potential martensitic variant based on Kurdjumov–Sachs (KS) relationship has different nucleation probability as a function of the interaction energy between externally applied stress and lattice deformation. Therefore, the transformed volume fractions are determined following selective variants given by the crystallographic orientation of austenitic matrix and applied stress in the frame of the crystal plasticity finite element. The developed finite element program is capable of considering the effect of volume change by the Bain deformation and the lattice-invariant shear during the martensitic transformation by effectively modifying the evolution of plastic deformation gradient of the conventional rate-dependent crystal plasticity finite element. The validation of the proposed model has been carried out by comparing with the experimentally measured data under simple loading conditions. Good agreements with the measurements for the stress–strain responses, transformed martensitic volume fractions and the influence of strain rate on the deformation behavior will enable the model to be promising for the future applications to the real forming process of the TRIP aided steel.  相似文献   

8.
单晶镍基合金具有优异的耐高温、高强、高韧等性能, 这些力学性能受制造过程引入的次级取向和冷却孔的影响. 已有研究大多关注单孔薄板的变形机理和力学性能, 而工程中应用的往往是多孔薄板, 当前亟需阐明多孔的塑性滑移带变形机理、次级取向效应以及冷却孔引起的应变梯度效应. 文章采用基于位错机制的非局部晶体塑性本构模型对含冷却孔镍基单晶薄板的单拉变形进行了数值模拟. 此模型基于塑性滑移梯度与几何必需位错的关系引入了位错流动项, 因此可有效刻画非均匀变形过程中的应变梯度效应. 为了全面揭示含孔镍基薄板的次级取向效应, 系统研究了[100]和[110]取向(两种次级取向)下镍基薄板的单拉变形行为, 并重点探究了在两种次级取向下冷却孔数量对薄板塑性行为的影响. 此外, 还分析了镍基合金板变形过程中各个滑移系上分切应力变化、主导滑移系开动以及几何必需位错密度的演化过程, 并讨论了塑性滑移量及其分布特征对不同次级取向镍基合金板强度的影响. 研究表明, 单孔和多孔的[110]薄板抗拉强度均低于[100]薄板, 多孔薄板的塑性变形过程比单孔薄板更为复杂且受次级取向影响更大, 并且发生滑移梯度位置主要位于冷却孔附近以及塑性滑移带区域. 研究结果可为工程中镍基合金的设计和服役提供理论指导.   相似文献   

9.
An experimental investigation was conducted to study the behavior under biaxial-tensile loading of [O2/±45] s graphite/epoxy plates with circular holes and to determine the influence of hole diameter on failure. The specimens were 40-cm×40-cm (16-in.×16-in.) graphite/epoxy plates of [O2/±45] s layup. Four hole diameters, 2.54 cm (1.00 in.), 1.91 cm (0.75 in.), 1.27 cm (0.50 in.) and 0.64 cm (0.25 in.), were investigated. Deformations and strains were measured using strain gages and birefringent coatings. Biaxial tension in a 2∶1 ratio was applied by means of four whiffle-tree grip linkages and controlled with a servohydraulic system. Stress and strain redistributions occur around the hole at a stress level corresponding to localized failure around the 67.5-deg location and nonlinear strain response at the 0-deg location. Maximum measured strains at failure on the hole boundary are higher (approximately 0.016) than the highest ultimate strain of the unnotched laminate (0.010). Two basic patterns of failure were observed: (a) horizontal cracking initiating at points off the horizontal axis and accompanied by extensive delamination of the subsurface ±45 deg plies, and (b) vertical cracking along vertical tangents to the hole and accompanied by delamination of the outer 0-deg plies. The strength reduction ratios are lower than corresponding values for uniaxial loading by approximately 16 percent, although the stress-concentration factor under biaxial loading is lower.  相似文献   

10.
Brünig  M.  Koirala  S.  Gerke  S. 《Experimental Mechanics》2022,62(2):183-197
Background

Dependence of strength and failure behavior of anisotropic ductile metals on loading direction and on stress state has been indicated by many experiments. To realistically predict safety and lifetime of structures these effects must be taken into account in material models and numerical analysis.

Objective

The influence of stress state and loading direction on damage and failure behavior of the anisotropic aluminum alloy EN AW-2017A is investigated.

Methods

New biaxial experiments and numerical simulations have been performed with the H-specimen under different load ratios. Digital image correlation shows evolution of strain fields and scanning electron microscopy is used to visualize failure modes on fracture surfaces. Corresponding numerical studies predict stress states to explain damage and fracture processes on the micro-scale.

Results

The stress state, the load ratio and the loading direction with respect to the principal axes of anisotropy affect the width and orientation of localized strain fields and the formation of damage mechanisms and fracture modes at the micro-level.

Conclusions

The enhanced experimental program with biaxial tests considering different loading directions and load ratios is suggested for characterization of anisotropic metals.

  相似文献   

11.
Cure residual stress and its effect on damage in unidirectional fibre-reinforced polymer–matrix composites under transverse loading were studied using a micromechanical unit cell model and the finite element method. The overall residual stress introduced from curing was determined by considering two contributions: volume shrinkage of matrix resin from the crosslink polymerization during isothermal curing and thermal contraction of both resin and fibre as a result of cooling from the curing temperature to room temperature. To examine the effect of residual stress on failure, a model based on the Maximum Principal Stress criterion and stiffness degradation technique was used for damage analysis of the unit cell subjected to mechanical loading after curing. Predicted damage initiation and evolution are clearly influenced by the inclusion of residual stress. Residual stress is always detrimental for transverse compressive loading and pure shear loading. For transverse tensile loading, residual stress is detrimental for relatively low resin strength and beneficial for relatively high resin strength. Failure envelopes were obtained for both biaxial normal loading and combined shear and normal loading and the results show that residual stress results in a shifting and contraction of the failure envelopes.  相似文献   

12.
45钢的J-C损伤失效参量研究   总被引:8,自引:1,他引:7  
为了在结构碰撞效应的有限元分析中描述材料行为,通过开展45钢在不同应力状态和温度下的准静态材料力学性能实验及拉伸SHB实验,考察了应力状态三轴度、温度和应变率对材料失效应变的影响。由实验数据得到了Johnson-Cook失效模型参量,并通过出现失效的Taylor撞击实验和数值模拟进行了一定的验证,表明模型描述与实验结果的趋势一致。  相似文献   

13.
The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics(MD) simulations.Our results show that the shear properties(such as shear stress–strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.  相似文献   

14.
The rate dependent crystallographic finite element program was implemented in ABAQUS as a UMAT for the analysis of the stress distributions near grain boundary in anisotropic bicrystals and tricrystals, taking the different crystallographic orientations into consideration. The numerical results of bicrystals model with the different crystallographic orientations shows that there is a high stress gradient near the grain boundaries. The characteristics of stress structures are dependent on the crystallographic orientations of the two grains. The existing of triple junctions in the tricrystals may result in the stress concentrations, or may not, depending on the crystallographic orientations of the three grains. The conclusion shows that grain boundary with different crystallographic orientations can have different deformation, damage, and faUure behaviors. So it is only on the detail study of the stress distribution can the metal fracture be understood deeply.  相似文献   

15.
低熔点金属的层裂是目前延性金属动态断裂的基础科学问题之一。采用非平衡态分子动力学方法模拟了冲击压力在13.5~61.0 GPa下单晶和纳米多晶锡的经典层裂和微层裂过程。研究结果表明:在加载阶段,冲击速度不影响单晶模型中的波形演化规律,但影响纳米多晶模型中的波形演化规律,其中经典层裂中晶界滑移是影响应力波前沿宽度的重要因素;在单晶模型中,经典层裂和微层裂中孔洞成核位置位于高势能处;在纳米多晶模型中,经典层裂中的孔洞多在晶界(含三晶界交界处)处成核,并沿晶定向长大,产生沿晶断裂,而微层裂中孔洞在晶界和晶粒内部成核,导致沿晶断裂、晶内断裂和穿晶断裂;孔洞体积分数呈现指数增长,相同冲击速度下单晶和纳米多晶Sn孔洞体积分数变化规律一致;经典层裂中孔洞体积分数曲线的两个转折点分别表示孔洞成核与长大的过渡和材料从损伤到断裂的灾变性转变。  相似文献   

16.
In this investigation the fracture behavior of functionally graded materials (FGMs) was studied by means of experiments carried out on model polymer-based FGMs. Model graded materials were manufactured by selective ultraviolet irradiation of ECO [poly(ethylene carbon monoxide)], a photo-sensitive ductile copolymer that becomes more brittle and stiffer under exposure to ultraviolet light. The mechanical response of the graded material was characterized using uniaxial tensile tests. Single edge notched tension graded ECO specimens possessing different spatial variations of Young’s modulus, failure stress and failure strain were tested under remote opening loading. A full-field digital image correlation technique was used to measure in real-time the displacement field around the crack tip while it propagated through the graded material. The measured displacement field was then used to extract fracture parameters such as stress intensity factor and T-stress, and thus construct resistance curves for crack growth in the FGMs. For this loading configuration it was found that the nonsingular T-stress term in the asymptotic expansion for stresses needs to be accounted for in order to accurately measure the fracture resistance in FGMs. In addition, the influence of local failure properties (i.e., failure stress and failure strain) on crack growth resistance was investigated in detail. It was found that depending on the combined effects of the spatial variation of these two failure parameters, regardless of the spatial variation of the Young’s modulus, the FGM fracture resistance can either increase, decrease or remain constant with continued crack growth.  相似文献   

17.
An experimental investigation was conducted to study the behavior under biaxial tensile loading of quasiisotropic graphite/epoxy plates with circular holes and to determine the influence of hole diameter on failure. The specimens were 40 cm×40 cm (16 in.×16 in.) laminates of [0/±45/90] s layup. Four hole diameters, 2.54 cm (1.00 in.), 1.91 cm (0.75 in.), 1.27 cm (0.50 in.) and 0.64 cm (0.25 in.), were investigated. Deformations and strains were measured using strain gages and birefringent coatings. Equal biaxial loading was introduced by means fo four whiffle-tree grip linkages and controlled with a servohyraulic system. Initially, the circumferential strain is uniform around the boundary of the hole. Subsequently, with increasing load, regions of high strain concentration with nonlinear response develop at eight characteristic locations 22.5 deg off the fiber axes. Failure in the form of cracking and delamination initiates at these points. Maximum strains at failure on the hole boundary reach values up to twice the ultimate strain of the unnotched laminate. The effect of hole diameter on strength was described satisfactorily using an average biaxial-stress criterion. Good correlation was also obtained with theoretical predictions based on a tensor-polynomial failure criterion for the lamina and a progressive degradation model.  相似文献   

18.
形状记忆聚合物作为一种新型的智能材料,由于质量轻、成本低以及变形回复率大等优势,已经在航空、医学等领域得到广泛应用。当前对于热致型形状记忆聚合物力学行为的研究,大都集中在整体变温的情况下,随着应用环境的越来越广泛,温度梯度对材料力学性能的影响效果越发重要。本文在均匀应力的假设下,给出材料在不同初始和传热条件下的温度梯度分布情况,结合传热学和热致型形状记忆聚合物相变理论本构模型,分别讨论了不同温度梯度对存储应变、弹性模量等力学性能的影响,通过理论分析和实验数据对比验证了模型正确性。本文研究可为不同导热情况下,对热致型形状记忆聚合物力学行为监测提供思路,也为形状记忆聚合物的进一步工程应用提供理论依据。  相似文献   

19.
Numerical results for the stress state around a circular hole in a [0/±45/0]s boron-epoxy plate under tensile loading are presented. This serves as a model for the initial stress state around the hole during fatigue loading. Comparison is drawn with experimental results for a fatigued specimen obtained from thermography and radiography. Using these results, an interpretation of the effects of the initial stress state on the thermal behavior and on failure initiation is given. This interpretation shows that the circumferential normal stresses are responsible for the initial heat generation and failure initiation in the fatigued specimen.  相似文献   

20.
304不锈钢室温和高温单轴循环塑性的实验研究   总被引:2,自引:0,他引:2  
对304不锈钢进行了室温和高温单轴应变控制和应力控制下的系统循环试验。揭示和分析了循环应变幅值、平均应变及其历史和温度历史对材料应变循环特性的影响以及应力幅值、平均应力及其历史以及温度对循环棘轮行为的影响。也讨论了应变循环和应力循环间交互作用对材料循环塑性行为的影响。研究表明,无益单轴应变循环特性还是非对称单轴应力循环下的棘轮效应不仅取决于当前温度和加载状态,而且强烈依赖于其加载历史。研究得到了一些有助于304不锈钢室温和高温单轴循环行为本构描述的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号