共查询到2条相似文献,搜索用时 0 毫秒
1.
The crystallographic constitutive model under temperature gradient is developed and introduced to study the deformation and failure mechanisms of single crystal superalloy. Tensile tests of thin-walled pipe specimen at different temperatures without cooled air flow were carried out. Based on the experimental results, the temperature dependence of constitutive model was studied and the basic parameters of constitutive model were obtained. To investigate the deformation and failure mechanisms, the thin-walled pipe specimen with cooled air flow under temperature gradient were tested. Considered the fluid-solid interface (FSI), a finite element method (FEM) was proposed to simulate the process of tension. In FEM, the activation rate of slip system was defined as the failure law of specimen under temperature gradient. The simulation result was in good agreement with the experiment result. Furthermore, the fracture surface of the specimen was observed by the scanning electron microscopy (SEM). The microstructure revealed that the slip deformation belonged to {1 1 1} crystalplane is a principal failure mechanism of single crystal superalloy under temperature gradient. The results of the SEM also implied that the proposed FEM method can be used to systemically study the deformation and failure behavior of single crystal superalloy cooled blade. 相似文献
2.
Experimental study of rotation effect on film cooling over the flat wall with a single hole 总被引:3,自引:0,他引:3
Zhi Tao Xiaojun Yang Shuiting Ding Guoqiang Xu Hongwei Wu Hongwu Deng Xiang Luo 《Experimental Thermal and Fluid Science》2008,32(5):1081-1089
A new rotating test rig was set up to investigate the rotation effect on the film cooling over the flat wall. A simple flat blade with an inclined 30° film hole, which is parallel to the hot mainstream, was installed. And different rotation orientations were selected to simulate the blade pressure or suction side of a turbine blade. A steady liquid crystal technique was applied to obtain detailed distribution of the temperature over the blade surface. And the average adiabatic film cooling effectiveness of the area adjacent to the film hole was selected to evaluate the cooling effect. Five different rotational speeds, i.e., 0, 300, 500, 800, 1000 r/min, were considered. Experimental results indicate that the film trajectory could bend under the rotating condition. With the increase of the rotational speed, on the pressure side, the film trajectory inclines centripetally firstly and then centrifugally; whereas, on the suction side the film trajectory bends centrifugally. On the other hand, as the rotational speed increases, the cooling effect is improved firstly and then worsened when Ω > 500–600 r/min on the pressure side. On the suction side, however, the cooling effect is not sensitive to the rotational speed. 相似文献