首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
[reaction: see text] Treatment of the oxiranyl carbaldimine with base (LDA or LDA/KOtBu) leads in an one-step procedure to the polyfunctionalized aziridine. This highly diastereoselective reaction is explained by a new type of an Aza-Darzens reaction, in which one enantiomer of the starting material is deprotonated to form an oxiranyl anion, which attacks the imine carbon atom of the other enantiomer (mutual kinetic resolution by double diastereofacial selection).  相似文献   

2.
This report describes a high-throughput method for measuring the enantiomeric excess of allylic acetates. Such methods are useful tools for screening libraries of potential catalysts for enantioselective reactions. This technique, which is called EMDee for an enzymatic method for determining enantiomeric excess, uses the lipase from Pseudomonas cepacia to hydrolyze the (R) enantiomer of an allylic acetate, while the (S) enantiomer does not react. The rate of the reaction is monitored by measuring the acetic acid that is produced during the hydrolysis reaction with a pH indicator. Using the Michaelis-Menten equation, the rate of the reaction can be correlated with the concentration of the (R) enantiomer. This method can process 88 samples in less that 30 min.  相似文献   

3.
The interactions between the stereoisomers of the chiral bis-intercalator [mu-C4(cpdppz)(2)-(phen)(4)Ru(2)](4+) and DNA reveal interesting dynamic discrimination properties. The two enantiomers Delta-Delta and Lambda-Lambda both form very strong complexes with calf thymus DNA with similar thermodynamic affinities. By contrast, they display considerable variations in their binding kinetics. The Delta-Delta enantiomer has higher affinity for calf thymus DNA than for [poly(dA-dT)](2), and the association kinetics of the dimer to DNA, as well as to polynucleotides, requires a multiexponential fitting function. The dissociation reaction, on the other hand, could be described by a single exponential for [poly(dA-dT)](2), whereas two exponentials were required for mixed-sequence DNA. To understand the key mechanistic steps of the reaction, the kinetics was studied at varied salt concentration for different choices of DNA and chirality of the threading complex. The enantiomers were found to have markedly different dissociation rates, the Lambda-Lambda enantiomer dissociating about an order of magnitude faster than the Delta-Delta enantiomer. Also, the salt dependence of the dissociation rate constants differed between the enantiomers, being stronger for the Lambda-Lambda enantiomer than for the Delta-Delta enantiomer. Since the dissociation reaction requires unthreading of bulky parts of the bis-intercalator through the DNA helix, a considerable conformational change of the DNA must be involved, possibly defining the rate-limiting step.  相似文献   

4.
A strategy for oxidative kinetic resolution of racemic indolines was developed, employing salicylaldehyde derivative as the pre‐resolving reagent and chiral phosphoric acid as the catalyst. The iminium intermediate, formed by the condensation reaction of an enantiomer of indoline with salicylaldehyde derivative, was hydrogenated by the same enantiomer of indoline to afford another enantiomer of indoline by a self‐redox mechanism. The oxidative kinetic resolution of 2‐aryl‐substituted indolines proceeded to give enantiomers in good yields with excellent enantioselectivities.  相似文献   

5.
The title reaction has been modeled by a Q2MM force field, allowing for rapid evaluation of several thousand TS conformations. For 10 experimental systems taken from the literature, the pathway leading to the major enantiomer has been identified. Furthermore, several possible contributions to the minor enantiomer have been investigated, providing an identification of the reasons for the sometimes moderate enantioselectivity of the title reaction, and allowing for future rational improvement of existing ligands. The favored pathways to the minor enantiomer, which must be blocked for significant selectivity improvement, differ strongly among ligands. Thus, design ideas are not necessarily transferable between ligand classes, but must be developed for each reaction on the basis of the pathway that needs to be blocked in each specific case. However, we have identified some general structure-selectivity relationships.  相似文献   

6.
Alkylation of racemic 1-(6-methoxynaphth-2-yl)ethyl acetate by potassium dimethyl malonate catalyzed by a chiral palladium-DUPHOS complex afforded the substitution product with 87% ee, along with 6-methoxy-2-vinylnaphthalene that arose from an elimination process, in a 43/57 substitution/elimination ratio. The reaction performed on a mixture of quasi-enantiomeric substrates provided insight into the stereochemical course of the reaction, establishing that—for a given enantiomer of the catalyst, one enantiomer of the substrate afforded mainly the substitution product whereas the other enantiomer underwent elimination.  相似文献   

7.
The polymerization in bulk of racemic tert-butyl thiirane with a chiral initiator resulting from the reaction between diethylzinc and (? )3,3-dimethyl-1,2-butanediol produces an optically active polymer by preferential consumption of R enantiomer. The unreacted monomer is enriched in S enantiomer. The relative rate r of consumption of R enantiomer versus S enantiomer is as high as 2.8. Obtained polymer could be separated into two crystalline fractions: an optically active fraction, formed from regular sequences of R type enantiomeric units, and an optically inactive fraction which corresponds to a racemate. Experimental results are consistent with a stereospecific mechanism of addition, the two enantiomers being chosen by two different type of sites. The stereoelective process is due to an unequal number of these two types of sites.  相似文献   

8.
The enantiomer selectivity in the propagation reaction of NCA was investigated by using suitable model reactions. Contrary to the assumption usually made, the enantiomer selectivity in the nucleophilic addition of chiral amines to NCA depended strongly on the structure of amine or NCA and the solvent. In the polymerization by an activated-NCA mechanism, the addition of activated NCA to NCA was found for the first time to be enantiomer-selective. In addition to this, the chiral penultimate unit was found to participate in the enantiomer selection. Structures of the transition states leading to the different types of enantiomer selection were proposed.  相似文献   

9.
The two stereoisomers formed on reaction of each of the enantiomers of [PtCl2(tmdz)] with d(GpG) have been identified by using one- and two-dimensional 1H NMR spectroscopy. For both isomers formed with the R enantiomer the 3'-H8 shifts are downfield from those for the 5'-H8. For the S enantiomer the reverse is observed, showing that the bulky tmdz ligand determines the pattern of shifts. Models of these isomers generated by molecular mechanics show that the bulky tmdz ligand limits the rotation of the guanine bases and enforces right-handed (R2) canting for both isomers formed by the R enantiomer and left-handed (L1) canting for those formed by the S enantiomer. The pattern of H8 shifts is the opposite to that expected for these cantings; this suggests that other factors may play a role in determining these shifts. The interactions between the tmdz and d(GpG) ligands are also shown by molecular mechanics and the broadness of the H8 NMR signals to influence the tendency of the coordinated guanine bases to rotate about their Pt-N7 bonds. Reaction of each of the enantiomers with a 52 base-pair nucleotide, with a total of six GpG binding sites, resulted in the formation of only one of the stereoisomers in each case, the first reported case of complete stereoselectivity, or stereospecificity, in the reaction of Pt complexes with DNA. The observed stereoisomers were identified by comparison with the properties of the d(GpG) complexes. Molecular mechanics models of the adducts with duplex DNA show that the nonformation of one stereoisomer is consistent with the steric bulk of the tmdz ligand preventing closure from the monofunctional adduct to the bifunctional adduct. Enantioselectivity is also observed in that the R enantiomer forms more monofunctional adducts than bifunctional (59:41), whereas the S enantiomer forms more bifunctional adducts (27:73). The origins of this enantioselectivity must be at the level of monofunctional adduct formation and this has been investigated by molecular mechanics modelling.  相似文献   

10.
A new integrated 3-zone simulated moving bed (SMB) concept with internal racemization reaction was suggested recently for the production of single enantiomers from racemic mixtures [1,2]. The process utilizes an internal gradient to trigger the racemization within a single zone. It can deliver the pure enantiomer and outperforms conventional technologies. In this contribution, the concept is validated experimentally for the separation of a model system compound. The results demonstrate that the new concept is capable of producing a single enantiomer with purity, yield and conversion of 100%.  相似文献   

11.
The enantio-differentiating hydrogenation of γ-ketoesters was carried out over asymmetrically modified solid catalysts. The parameters affecting the enantiomer excess (ee) were investigated and the results were compared with those of the hydrogenation of methyl acetoacetate and 2-octanone reported in the literature. The highest value of enantiomer excess of 51% was attained for the hydrogenation of methyl 4-oxopentanoate over a tartaric acid (TA)-NaBr-modified reduced nickel catalyst prepared from nickel oxide. The amount of NaBr in the modification solution needed to be optimized according to the manufacturers of the nickel oxides. The addition of an appropriate amount of carboxylic acid to the reaction media increased the enantiomer excess of the hydrogenated products.  相似文献   

12.
[reaction: see text] A highly diastereoselective intramolecular nitrone cycloaddition onto a chiral ketene equivalent, obtained by Horner-Wadsworth-Emmons olefination of either enantiomer of bis-sulfinyl phosphonate 6, is described. Cycloaddition gave 5,5-disubstituted isoxazolidine 10 in good yield as a single diastereomer. Catalytic hydrogenolysis of 10 furnished either enantiomer of optically pure cis-2-aminocyclopentane-1-carboxylic acid.  相似文献   

13.
The enantioselectivity of the self-assembled monolayer (SAM) of homocysteine formed on the (111)-oriented gold surface was investigated. We analyzed the redox behavior of 3,4-dihydroxyphenylalanine (DOPA), which is an electrochemically active chiral molecule, by means of cyclic voltammetry at a gold electrode modified with one enantiomeric form of homocysteine. It was demonstrated that the homocysteine SAM of one enantiomeric form blocked the redox reaction of only one enantiomer of DOPA, with cross inversion for the other enantiomer, in acidic solution.  相似文献   

14.
Various bacterial cells were tested to identify ω-transaminase activity. For this purpose, the kinetic resolution of a rac-amine was chosen as an assay reaction transforming, in the ideal case, one enantiomer into the corresponding ketone and leaving the other enantiomer untouched. Sodium pyruvate was employed as an amino acceptor. To test also for the amination of the prochiral ketone various amino donors were investigated. Alanine proved to be the most suitable amino donor especially when coupled with a pyruvate decarboxylase to shift the reaction equilibrium; however, much lower conversions were achieved compared to the kinetic resolution. Janibacter terrae DSM 13953 was identified as the most suitable microorganism to possess ω-transaminase activity.  相似文献   

15.
Spontaneous chiral asymmetry generation, which is the preferential production of one enantiomer in a non‐chiral environment by chiral autocatalysis, could be observed in a preparation of a octahedral cobalt complex, cis‐[CoBr(NH3)(en)2]Br2. A concentration fluctuation in a far‐from‐equilibrium chemical system will grow if the rate of local autocatalytic production of a compound in a small volume overcomes its loss due to diffusion. In a chirally autocatalytic system, this phenomenon could produce a large variation in the enantiomeric excess. In a reaction that produces the cobalt complex, the reaction rate was found to increase in the highly supersaturated solution of the product. In supersaturated solutions, before crystals of the solute have nucleated, embryos, which are the clusters of the solute, are formed. Ternary water‐solubility isotherm of each enantiomer of the cobalt complex suggests that each embryo consists of one exclusive enantiomer. Each chiral cluster, which could be regarded as polymeric material, thus formed in a highly supersaturated solution, may act as catalyst for the production of the same enantiomer. Life is a far‐from‐equilibrium self‐organized polymeric system in which chiral symmetry is broken. This reaction system is thus a model for the generation and amplification of chiral asymmetry in polymeric materials; it provides some insight in to the mechanisms that might have produced the observed biomolecular homochirality.  相似文献   

16.
We demonstrate quantum mechanically how to resolve enantiomers from an oriented racemic mixture taking advantage of photodissociation. Our approach employs a femtosecond ultraviolet (UV) laser pulse with specific linear polarization achieving selective photodissociation of one enantiomer from a mixture of L and R enantiomers. As a result, the selected enantiomer is destroyed in the electronically excited state while the opposite enantiomer is left intact in the ground state. As an example we use H2POSD which presents axial chirality. A UV pulse excites the lowest singlet excited state which has nsigma* character and is, therefore, strongly repulsive along the P-S bond. The model simulations are performed using wavepackets which propagate on two dimensional potential energy surfaces, calculated along the chirality and dissociation reaction coordinates using the CASSCF level of theory.  相似文献   

17.
The interaction of inherently chiral resorc[4]arenes with different chiral ammonium ions was measured by ESI-MS. For that purpose one enantiomer of the ammonium guests was labeled with deuterium to distinguish the enantiomers by their mass. We synthesized the ammonium salts by reaction of chiral primary amines with either CH3I or CD3I and analyzed the resulting ammonium iodides by NMR and optical rotation. The complexation experiments were performed by mixing the chiral host with various ratios of the unlabeled guest and its labeled enantiomer. By analysis of the integrals of the host-guest complexes we observed a chiral discrimination effect and a secondary isotope effect as well.  相似文献   

18.
The mechanism of the hydroamination of vinylarenes with anilines catalyzed by phosphine-ligated palladium triflates was uncovered. eta3-Arylethyl diphosphine palladium triflate complexes, which result from migratory insertion of vinylarene into a palladium hydride triflate, were shown to be the resting state of the catalytic cycle. A series of these complexes has been isolated and fully characterized. The [(R)-Tol-BINAP][1-(2-naphthyl)ethyl]palladium triflate derivative 1a was crystallographically characterized. This complex reacted with aniline to form the N-phenethylaniline product in 83% yield. Reaction of the benzylic derivative [(R)-Tol-BINAP](eta3-benzyl)palladium triflate with aniline also formed the N-benzylaniline product in a high 87% yield. Predominant inversion of configuration from the reaction between 1a, which is enantiopure, and aniline showed that external attack of the amine on the eta3-arylethyl ligand occurred to form the product. This product from reaction of aniline with 1a is the opposite enantiomer to that obtained from the catalytic process. Thus, a minor diastereomer gives the major enantiomer in the catalytic cycle, and the major diastereomer gives the minor enantiomer. Consistent with this assertion, kinetic studies showed that the major diastereomer formed product with a rate constant roughly 3.5 times slower than the rate constant for the catalytic process that contains all diastereomers.  相似文献   

19.
A combined use of ephedrine and cinchonine as resolving agents enabled facile resolution of racemic tert-butylphenylphosphinous acid-borane (1) into the two enantiomers in ca. 31-32% yield each. The resolved 1 served as a model substrate to study stereoselective synthetic transformations of phosphinous acid-boranes yielding optically active phosphinite-borane, boranatophosphinous-sulfonic anhydride, secondary phosphine-borane, tertiary phosphine-borane, secondary phosphine oxide, and phosphinic halides. By the judicious choice of the reaction paths, either enantiomer of tert-butylphenylphosphine-borane and of tert-butylmethylphenylphosphine-borane could be stereoselectively obtained from a single enantiomer of 1.  相似文献   

20.
《Tetrahedron: Asymmetry》1999,10(10):1927-1933
A short and efficient enantiospecific total synthesis of natural (+)-laurene and its enantiomer is described. The methodology was developed by employing a stereoselective H-ene reaction of an isocyclic allyltrimethylsilane with paraformaldehyde, followed by a lipase-mediated kinetic resolution of the racemic key intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号