首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
An on-line coupled capillary isotachophoresis-capillary zone electrophoresis method for the determination of glycyrrhizin in liqueurs is described. The optimised electrolyte system was 5 mM HCl+11 mM varepsilon-aminocaproic acid+0.05% hydroxyethylcellulose+30% methanol (leading electrolyte), 5 mM caproic acid+30% methanol (terminating electrolyte) and 20 mM caproic acid+10 mM histidine+0.1% hydroxyethylcellulose+30% methanol (background electrolyte). Method characteristics, i.e., linearity (20-500 ng/ml), accuracy (recovery 99+/-4%), intra-assay repeatability (2%), intermediate repeatability (3.8%) and detection limit (8 ng/ml) were determined. Speed of analysis, low laboriousness, high sensitivity and low-running cost are the typical attributes of the capillary isotachophoresis-capillary zone electrophoresis method. Developed method was successfully applied to analysis of liqueurs with liquorice extract and some foods (sweets and food supplements) containing liquorice. Found levels of glycyrrhizin in liqueurs, sweets and food supplements varied between 1-16 mg/l, 850-1050 mg/kg and 1.6-1.8 g/kg, respectively.  相似文献   

2.
An on-line coupled capillary isotachophoresis--capillary zone electrophoresis (cITP-CZE) method for the determination of domoic acid in shellfish and algae is described. The optimised cITP-CZE electrolyte system was 10 mM HCl + 20 mM beta-alanine (BALA) + 0.05% hydroxyethylcellulose (leading electrolyte), 5 mM caproic acid (terminating electrolyte) and 20 mM caproic acid + 20 mM BALA + 0.1% HPMC (background electrolyte). A clear separation of the domoic acid from the other components of methanolic sample extract was achieved within 25 min. Method characteristics, i.e., linearity (0-200 microg/l), accuracy (recovery 101+/-3%), intra-assay repeatability (2.4%) and detection limit (1.5 microg/l) were determined. Speed of analysis, low laboriousness, high sensitivity and low running cost are the typical attributes of the cITP-CZE method. Developed method was successfully applied to analysis of shellfish samples and food supplements containing algae extract.  相似文献   

3.
Some oxyhalides can be found in drinking waters as inorganic disinfection byproducts. An on-line coupled capillary isotachophoresis—capillary zone electrophoresis (CITP-CZE) method was developed for the analysis of chlorate, chlorite and bromate in water. The optimized CITP-CZE electrolyte system consisted of the following: 10 mM—HCl+20 mM—β-Alanine (leading electrolyte), 5 mM—succinic acid (terminating electrolyte), and 10 mM—succinic acid +5 mM—β-Alanine +0.1% HPMC (carrier electrolyte). A clear separation of oxyhalides from other components of drinking water was achieved within 25 min. Method characteristics, i.e., linearity (0–200 ng/mL), accuracy (88–110%), intra-assay (3–5%), quantification limit (5–15 ng/mL), and detection limit (2–5 ng/mL), were determined. Minimum labor requirements, sufficient sensitivity and low running cost are important attributes of this method. It was found that the developed method is useful for the routine analysis of oxyhalides in water.  相似文献   

4.
Selected phenolic acids are determined by capillary zone electrophoresis and HPLC, each using UV detection. The optimised CZE background electrolyte contained 50 mM acetic acid, 95 mM 6-aminocaproic acid, 0.1% polyacrylamide, 1% polyvinylpyrrolidone, and 10% methanol. Twelve phenolic acids (gallic, p-hydroxybenzoic, 3,4-dihydroxybenzoic, vanillic, syringic, o-coumaric, p-coumaric, caffeic, sinapic, ferulic, salicylic and chlorogenic) were separated within 10 minutes. Chromatographic separation of these phenolic acids was carried out on an Eclipse XBD C8 column using a mobile phase gradient (acetonitrile / methanol / water / 0.1% phosphoric acid); all were separated within 25 minutes. Electrophoretic and chromatographic determinations of ferulic and chlorogenic acids were compared on barley, malt, and potato samples. The methods’ characteristics were: linearity (1–20 mg ml and 0.2–4 mg ml−1), accuracy (recovery 94 ± 5% and 96 ± 4%), intra-assay repeatability (4.1% and 3.5%), and detection limit (0.2 and 0.02 mg ml−1).   相似文献   

5.
Acebutolol [N-{3-acetyl-4-[(2-hydroxy-3-(isopropylamino)propoxy]phenyl} butanamide] is a cardioselective beta-blocker with a potent anti-hypertensive and antiarrhythmic effect. The optimised operational system of electrolytes for the newly developed ITP separation of acebutolol consisted of 10mM potassium acetate +10mM acetic acid (pH 4.65) as the leading electrolyte and 10mM beta-alanine with pH approximately 4 (adjusted with acetic acid) as the terminating electrolyte. The driving and detection currents were 75 and 20 microA, respectively and the analysis took approximately 13 min. Under these conditions the effective mobility of acebutolol was determined as 20.7 x 10(-9) m2 V(-1) s(-1). The calibration dependence was rectilinear in the range 0.14-1.4 mg ml(-1) of acebutolol base (r = 0.9995); relative standard deviation (RSD) values were 1.1% and 1.2% (n = 6) when determining 0.42 and 0.98 mg ml(-1) of acebutolol in a pure standard solution. The method, with the limit of detection (LOD) of 0.04 mg ml(-1) and limit of quantification (LOQ) of 0.12 mg ml(-1), was applied to the assay of acebutolol in Sectral tablets, Acecor tablets, Apo-acebutol tablets (nominal content 400 mg of acebutolol per tablet) and Acebirex tablets (nominal content 200 mg of acebutolol per tablet) with RSD = 0.7-1.7% (n = 6). No interference from any excipients present in the tablets was observed. The recoveries ranged from 98.8% to 102.4% as found by the standard addition technique.  相似文献   

6.
An on-line coupled capillary isotachophoresis-capillary zone electrophoresis (cITP-CZE) method for the determination of the fumaric acid content in apple juice is presented. A clear separation of fumaric acid in real samples is achieved within 20 min. The leading, terminating and background electrolyte of the employed system consist of 10 mM HCl+beta-alanine+5 mM beta-cyclodextrin+0.05% hydroxypropylmethylcelullose (HPMC), pH 3, 10 mM citric acid and 20 mM citric acid+beta-alanine+5 mM beta-cyclodextrin+0.1% HPMC, pH 3.3, respectively. The linearity, recovery, repeatability and detection limit of the developed method are 25-1000 ng/ml, 1.07%, 95.4+/-3.5 (+/-s)% and 10 ng/ml, respectively. Low laboriousness (no sample pretreatment), sufficient sensitivity and low running cost are the important attributes of the cITP-CZE method which was successfully applied to analyses of real samples of apple juices.  相似文献   

7.
A capillary zone electrophoresis (CZE) method with conductometric detection of biogenic amines (cadaverine, putrescine, agmatine, histamine, tryptamine and tyramine) is described. The optimised background electrolyte was the following: 15 mM histidine + 5 mM adipic acid + 1.5 mM sulphuric acid + 0.1 mM ethylenediaminotetraacetic acid + 0.1% hydroxyethylcellulose + 50% methanol. A clear separation of six biogenic amines from other components of acidic sample extract was achieved within 10 min. Method characteristics, i.e., linearity (0-100 micromol/ml), accuracy (recovery 86-107%), intra-assay repeatability (2-4%), and detection limit (2-5 micromol/l) were evaluated. Low laboriousness, sufficient sensitivity, speed of analysis, and low running cost are important attributes of this method. The developed method was successfully applied on the determination of biogenic amines in selected food samples.  相似文献   

8.
A simple technique is described for the routine capillary electrophoretic determination of formic and acetic acid in rain water. These acids were determined simultaneously in approximately 6 min using a carrier electrolyte containing lO mM phosphate and 0.5 mM myristyltrimethylammonium bromide (MTAB) as electroosmotic flow (EOF) modifier at pH 6.5 and direct UV detection at 185nm. The method is quantitative, with recoveries in the 99-101% range and linear up to 5mgL-1. The precision is better than 2.1% and the procedure shows the appropriate sensitivity, with detection limits between 0.042 and 0.055mg L-1. The proposed method was successfully employed for the determination of formic and acetic acid in 57 rain water samples, collected from October 2000 to February 2001 in four different sampling stations located in Galicia (NW Spain), by direct sample injection after filtration.  相似文献   

9.
We describe the use of capillary zone electrophoresis (CZE) for the qualitative and quantitative determination of major alkaloids (i.e., thebaine, codeine, morphine, papavarine and narcotine) in gum opium involving the analysis of alkaloids without derivatization or purification. Three extractions with 2.5% w/v aqueous acetic acid quantitatively extracted major alkaloids. The separation was carried out by CZE using a 7:3 mixture of methanol and sodium acetate (100 mM, pH 3.1) at a potential of 15 kV, with UV detection at 224 nm. Spiking of pure reference alkaloid standards in the opium extract was used for peak identification. The influences of buffer composition, pH and voltage on the separation of alkaloids were studied. The detection limit of each alkaloid dissolved in methanol was found to be 850 ng/mL (morphine), 450 ng/mL (thebaine), 500 ng/mL (codeine), 550 ng/mL (papaverine), and 500 ng/mL (narcotine) at an injection pressure of 300 mbar (injection volume, 4 nL) with a signal-to-noise ratio of 3:1. The external standard method was used for the quantification of alkaloids. The calibration plot was based on linear regression analysis. The relative standard deviation (RSD) for peak area and migration time was in the range of 1.03-3.56% and 0.34-0.69%, respectively. Percentage compositions (g%) of opium alkaloids in five gum opium samples were found to be in the range of 14.45-15.95 (morphine), 2.0-3.45 (codeine), 1.32-2.73 (thebaine), 0.92-2.37 (papavarine), and 3.85-5.77 (narcotine). The method developed is suitable for the routine analysis of major gum opium alkaloids in samples of forensic importance.  相似文献   

10.
Flavonoids are an important bioactive group in the commonly used herbal medicine Flos Lonicerae. A new method of capillary zone electrophoresis (CZE) coupled with solid-phase extraction (SPE) was developed for simultaneous assay of flavonoid aglycones and glycosides in Flos Lonicerae. Optimum CZE separation was achieved with a background electrolyte (BGE) solution consisting of 80 mM boric acid and 20 mM phosphate acid, adjusted to pH 8.1, with 15% acetonitrile (v/v) added, and applying a separation voltage of 28 kV. The SPE method was used for pretreating the complex matrix of botanical materials and good reproducibility was obtained when avicularin was used as internal standard. Linearity of the method was excellent with correlation coefficients (r2) in the range of 0.9995-0.9999 and detection limits were lower than 0.6 microg/mL for the four flavonoids. The obtained recoveries varied between 93 to 104% while the relative standard deviations (RSDs) were below 4.4% (n=3). The developed CZE method was successfully used for the separation of eight flavonoids and the quantification of the four flavonoids in five species of Flos Lonicerae.  相似文献   

11.
We describe the procedure developed for the simultaneous detection and quantification of angiotensin II and angiotensin-(1-7), by capillary zone electrophoresis with UV detection by photodiode-array, at a wavelength of 200 nm, in the plasma and urine from hypertensive rats. Optimal separation was achieved with a 100 mM boric acid + 3 mM tartaric acid + 10 fM gold (III) chloride electrolyte solution at pH 9.80. The applied voltage was 30 kV and the capillary temperature was kept constant at 20 °C. The method was over the concentration range of 0.01-500 pmol/mL. All determination coefficients were higher or equal to 0.9985. Limits of detection and quantification for angiotensin II were 0.0110 pmol/mL (S/N = 3) and 0.0195 pmol/mL (S/N = 5), respectively. While for angiotensin-(1-7), the limits were 0.0112 pmol/mL (S/N = 3) and 0.0193 pmol/mL (S/N = 5), respectively. The present method offers a time-saving way to simultaneous determination of angiotensin II and angiotensin-(1-7), since it can be completed in 10 min, compared to other methodologies reported in the literature for capillary electrophoresis and liquid chromatography, which require more than 1 h for analysis of complex matrices, such as plasma and urine. The procedure is illustrated by experiments that quantify simultaneously angiotensin II and angiotensin-(1-7) in plasma and urine from hypertensive and normotensive rats, with and without antihypertensive treatment. The levels of angiotensin II and angiotensin-(1-7) detected in the experimental model, resulted in a recovery of 99.00-106.01% and a reproducibility of less than 10%. The proposed analytical method is a use full tool for the simultaneous detection of angiotensin II and angiotensin-(1-7) implicated in vascular remodeling in pathologies such as hypertension.  相似文献   

12.
Potatoes, members of the Solanaceae plant family, contain calystegines, water-soluble nortropane alkaloids, which are biologically active as glycosidase inhibitors. The content of calystegines A(3) and B(2) in different varieties of potato and in various parts of the tubers (whole potato, peel, flesh, and sprouts) were analysed by new capillary zone electrophoresis and capillary isotachophoresis methods and by the routine GC method. The optimized background electrolyte for capillary zone electrophoretic analysis was mixture of 20 mM histidine, 20 mM N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid and 20% (v/v) methanol in demineralized water. Calystegines were detected by indirect UV detection at 210 nm. A clear separation of calystegines from other components of the methanolic sample extract was achieved within 4 min. The electrolytes for isotachophoretic analysis consisted of 5 mM NH(4)OH, 10 mM N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid, 0.1% hydroxyethylcellulose and 20% (v/v) methanol in demineralized water (leading) and 5 mM histidine+10 mM acetic acid+20% (v/v) methanol in demineralized water (terminating). Calystegines were separated within 20 min and detected by a conductimeter. Method characteristics of both zone electrophoresis and isotachophoresis, i.e., linearity (10-100 ng/microl and 1-10 ng/microl), accuracy (recovery 96+/-5% and 98+/-4%), intra-assay repeatability (4.2% and 3.5%), and detection limit (3 and 0.4 ng/microl) were evaluated. Simple sample preparation, sufficient sensitivity, speed of analysis, and low running cost are important attributes of the electrophoretic methods. The overall results of electrophoretic methods were comparable with GC.  相似文献   

13.
Thermal lens detection with a 325.0 nm He-Cd excitation laser is used for thermooptical indirect detection in combination with the capillary electrophoretic separation of organic anions. The optimization of indirect thermooptical detection is discussed. With Mordant Yellow 7 (an azo dye) chosen as a probe ion limits of detection for 1-heptane-, 1-pentane-, 1-butane-, 1-propanesulfonic, and acetic acid at a level of n × 10−7 M were achieved with a separation electrolyte containing 50 μM of the probe ion and 5 mM Tris pH 9.90. A further increase in the detection sensitivity (twofold decrease in the limit of detection ) was obtained with a separation electrolyte containing a volume fraction of 20% acetonitrile.  相似文献   

14.
We describe the development of a capillary electrophoresis method for the determination of gentamicin C1, C1a, C2a, and C2 components in human serum. Using a weak cation-exchanger with 20 mM phosphate buffer, pH 7.4, 200 mM borate buffer, pH 9.0, and ammonia/methanol, solid-phase extraction (SPE) of gentamicin components from the human sera was performed. The extract was derivatized with 1,2-phthalic dicarboxaldehyde/mercaptoacetic acid reagent. The derivatives were separated with a background electrolyte comprising 60 mM 2-(N-cyclohexylamino)ethanesulfonic acid (CHES) buffer at pH 9.5 containing 31.6% m/v methanol, and quantified with UV-light absorption detection at 230 nm. The identity of the gentamicin components was confirmed by mass spectrometry. The SPE recovery of the gentamicin ranged from 78% to 93%. The calibration curves were linear from the concentration limit of quantitation (LOQ) to 30 mg/L for the gentamicin mixture. The LOQ for gentamicin C1 was 0.33 mg/L, for C2a 0.23 mg/L, C2 0.25 mg/L, C1a 0.27 mg/L and the concentration limit of detection (LOD) for C1 was 0.15 mg/L, C2a 0.11 mg/L, C2 0.12 mg/L, C1a 0.13 mg/L. Intra-assay relative standard deviation (RSD) values were for C1 (5%), C1a (7%), C2 (6.5%) and C2a (9%); inter-assay RSD values were for C1 (11%), C1a (13.3%), C2 (15%) and C2a (14%). The Pearson's correlation between capillary electrophoresis and immunoassay revealed a linear relationship between these two techniques with r = 0.9. This method for determination of gentamicin C1, C1a, C2a, and C2 in human serum can thus be used in the entire therapeutic concentrations range of gentamicin.  相似文献   

15.
A rapid, accurate, precise, and optimized capillary zone electrophoresis assay was established and validated for the simultaneous quantification of metformin and vildagliptin in tablets. The electrophoretic separation was achieved on an untreated bonded silica capillary with a background electrolyte comprising 25 mM of borate buffer at pH 7.5 at 207 nm. The concentration of the buffer and the pH of BGE were optimized using the multivariate optimization method for determining the retention time and peak area. Furthermore, the sample injection time, capillary oven temperature, and applied voltage were optimized. The capillary zone electrophoresis technique was validated for all required parameters as per the International Conference on Harmonization recommendations. The linearity ranged in the concentrations of 5–500 µg/mL and 5–100 µg/mL with the limit of detections of 0.22 µg/mL and 0.40 µg/mL for metformin and vildagliptin, respectively. In addition, the percent relative standard error for repeatability and inter-day precision was within the acceptable range. The mean recoveries determined by the capillary zone electrophoresis method were 99.2% and 100.4% for metformin and vildagliptin, respectively. Finally, the capillary zone electrophoresis process was effectively used for the assays of metformin and vildagliptin in their solid dosage form, and statistical outcomes were in agreement with the outcomes of the previously validated RP-HPLC method.  相似文献   

16.
A capillary zone electrophoresis method was developed for the simultaneous determination of seven phenolic acids, including protocatechuic aldehyde ( 1 ), salvianolic acid C ( 2 ), rosmarinic acid ( 3 ), salvianolic acid A ( 4 ), danshensu ( 5 ), salvianolic acid B ( 6 ), and protocatechuic acid ( 7 ), in Danshen and related medicinal plants. A running buffer composed of 20 mM sodium tetraborate adjusted to pH 9.0, and containing 12 mM β‐cyclodextrin as modifier. Baseline separation was achieved within 17 min running at the voltage of 20 kV, temperature of 25°C and detection wavelength of 280 nm. The relative standard deviations of migration time ranged from 0.2 to 0.7% and the peak area ranged from 1.5 to 3.7% for the seven analytes, indicating the good repeatability of the proposed method. The method was extensively validated by evaluating the linearity (R2 ≥ 0.9992), limits of detection (0.14–0.36 μg/mL), limits of quantification (0.47–1.19 μg/mL), and recovery (96.0–102.6%). Under the optimum conditions, samples of Danshen and related medicinal plants were analyzed using the developed method with high separation efficiency.  相似文献   

17.
The separation of linear alkylbenzene sulfonates (LAS) by nonaqueous capillary electrophoresis (NACE) using negative polarity, and a buffer containing acetic acid and an alkylamine in nonaqueous ethanol, has been investigated. Several primary, secondary, and tertiary alkylamines with alkyl chains of different length were compared. The solutes travelled against the electroosmotic flow (EOF), and at the same time were braked by association with the alkylamine molecules or with the alkylammonium ions. The best resolution between adjacent LAS homologues (R approximately 2.1), partial isomer resolution in two peaks, and at the same time an excellent repeatability, was obtained with a small dipentylamine excess over the acetic acid. When the buffer concentration increased, resolution between the homologues increased slightly (R approximately 2.4), and a different isomer group was partially separated. A background electrolyte (BGE) containing 10 mM acetic acid and 20 mM dipentylamine to separate and quantify the homologues within 25 min is recommended. The isomer peak profile with up to three peaks can be estimated using this buffer and another one with 80 mM acetic acid and 90 mM dipentylamine. The former BGE was used to determine LAS in liquid and powder laundry detergents. The detection limit for the determination of total LAS in these products was 2.5 microg mL(-1), and the peak area and migration time interday repeatabilities were below 4.3 and 2.8%, respectively.  相似文献   

18.
Unger M  Laug S  Holzgrabe U 《Electrophoresis》2005,26(12):2430-2436
The root extracts of goldenseal (Hydrastis canadensis L.) are popular phytomedicines for the treatment of gastrointestinal disorders and upper respiratory tract infections. Here we describe a simple and fast capillary zone electrophoresis (CZE) method with ultraviolet detection at 225 nm for the quantification of the major goldenseal constituents, berberine and hydrastine, in herbal remedies containing goldenseal root extracts. Tritoqualine, an antihistaminic drug with a hydrastine-like phthalidisoquinoline structure, was applied as an internal standard. The running buffer was a 1:5 mixture of 500 mM ammonium acetate (adjusted to pH 3.4 with acetic acid) and methanol. Our newly developed CZE method was validated regarding limit of detection (LOD), limit of quantification, linearity, accuracy and precision. For both berberine and hydrastine, the LOD was 1.0 microg/mL and the linearity was obtained between 2.5 and 500 microg/mL. Using our newly developed method, both the alkaloids could be analysed in herbal remedies containing goldenseal root extracts within 8 min.  相似文献   

19.
Besides the racemate, the S-enantiomer of ibuprofen (Ibu) is used for the treatment of inflammation and pain. Since the configurational stability of S-Ibu in solid state is of interest, it was studied by means of ball milling experiments. For the evaluation of the enantiomeric composition, a chiral CE method was developed and validated according to the ICH guideline Q2(R1). The addition of Mg2+, Ca2+, or Zn2+ ions to the background electrolyte (BGE) was found to improve Ibu enantioresolution. Chiral separation of Ibu enantiomers was achieved on a 60.2 cm (50.0 cm effective length) x 75 μm fused-silica capillary using a background electrolyte (BGE) composed of 50 mM sodium acetate, 10 mM magnesium acetate tetrahydrate, and 35 mM heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) as chiral selector. The quantification of R-Ibu in the mixture was performed using the normalization procedure. Linearity was evaluated in the range of 0.68–5.49% R-Ibu (R2 = 0.999), recovery was found to range between 97 and 103%, the RSD of intra- and interday precision below 2.5%, and the limit of quantification for R- in S-Ibu was calculated to be 0.21% (extrapolated) and 0.15% (dilution of racemic ibuprofen), respectively. Isomerization of S-Ibu was observed under basic conditions by applying long milling times and high milling frequencies.  相似文献   

20.
A capillary electrophoretic method with UV detection for separation and quantitation of perfluorocarboxylic acids (PFCAs) from C6-PFCA to C12-PFCA has been developed. The optimization of measurement conditions included the choice of the most appropriate type and concentration of buffer in the background electrolyte (BGE), as well as the type and the content of an organic modifier. The optimal separation of investigated PFCAs was achieved with 50 mM phosphate buffer and 40% isopropanol in the BGE using direct UV detection. The optimum wavelength for direct UV detection was optimized at 190 nm. For indirect detection, several chromophores were studied. Five mM 3,5-Dinitrobenzoic acid (3,5-DNBA) in 20 mM phosphate buffer BGE and indirect UV detection at 280 nm gave the optimal detection and separation performance for the investigated PFCAs. The possibility of on-line preconcentration of solutes by stacking has been examined for indirect detection. The detection limits (LODs) determined for direct UV detection ranged from 2 microg/mL for C6-PFCA to 33 microg/mL for C12-PFCA. The LODs obtained for indirect UV detection were comparable to those obtained for direct UV detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号