首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to transverse nuclear magnetizations, longitudinal spin magnetizations are usually considered as insensitive to magnetic field gradients. While this assumption is valid for homogeneously excited samples, the apparent longitudinal spin relaxation behavior of thin magnetization slices in high magnetic fields is strongly modified by diffusion. In this contribution, we present the results of theoretical and experimental studies on this effect. Furthermore, possible applications and the impact on different types of NMR techniques using strong magnetic field gradients are discussed.  相似文献   

2.
We calculate the nuclear spin-lattice relaxation time and the Knight shift for the case of gapped graphene systems. Our calculations consider both the massive and massless gap scenarios. Both the spin-lattice relaxation time and the Knight shift depend on temperature, chemical potential, and the value of the electronic energy gap. In particular, at the Dirac point, the electronic energy gap has stronger effects on the system nuclear magnetic resonance parameters in the case of the massless gap scenario. Differently, at large values of the chemical potential, both gap scenarios behave in a similar way and the gapped graphene system approaches a Fermi gas from the nuclear magnetic resonance parameters point of view. Our results are important for nuclear magnetic resonance measurements that target the 13C active nuclei in graphene samples.  相似文献   

3.
An analytical expression for a signal of the single-pulse echo generated in nonresonant pulse excitation of an inhomogeneously broadened two-level quantum system has been obtained, with the reversible and irreversible relaxation taken into account. It is shown that the rate of decay of the single-pulse echo is determined by the rate of reversible and irreversible transverse relaxation. It has been established that the contribution of the reversible and irreversible relaxations to decay of the single-pulse echo depends on the ratio between the detuning of the pulse-carrying frequency from resonance to the Rabi frequency. The difference between the times of transverse irreversible relaxation measured in manganese ferrite MnFe2O4 by the methods of single and two-pulse echo of nuclear magnetic resonance has been explained within the framework of the theoretical expressions obtained.  相似文献   

4.
The influence of superplasticizer sulfonated naphthalene formaldehyde (SNF) on the hydration process of tricalcium silicate (C3S) paste was investigated by (1)H nuclear magnetic resonance spin-spin and spin lattice relaxation times. The addition of SNF superplasticizer to C3S paste clearly affects the morphology and growth rates of the hydration products, mainly by increasing the dormant period length, which lasts for several hours more than in conventional C3S hydrated paste, while reducing the acceleration period length. The relaxation data indicated that a pronounced delay occurs in the C3S hardening when sulfonated polymers are added to the makeup water. For all the analyzed samples, prepared with a water-to-C3S ratio of 0.4, the decay of the echo magnetization has been fitted by adopting both a monoexponential and a biexponential relaxation model in order to evaluate the contributions from water in different regimes of hydration.  相似文献   

5.
A low-field nuclear magnetic resonance spectrometer for non-invasive monitoring of human finger blood glucose fluctuations was developed. Saline solution and blood serum samples with different glucose concentrations were first detected by the spectrometer and it has been found that there was a high-linear correlation between the glucose concentration and the transverse relaxation time. Then, the spectrometer was employed to noninvasively measure a finger from each of the several volunteers. The experiment results showed that the transverse relaxation time of the human finger increases with human blood glucose concentration. In conclusion, the human finger nuclear magnetic resonance spectrometer could be a potential tool to noninvasive monitoring of human body’s blood glucose fluctuations in the future.  相似文献   

6.
The1H nuclear magnetic spin relaxation of water in slurry of kaolin clay was investigated in the presence of magnetite (black iron oxide, Fe3O4) at 0.2 T and room temperature. The water spectra at high magnetite contents showed two different resonances, presumably from surface-associated water and free interstitial water. The difference in observed resonance frequencies increased as much as 200 ppm with increasing magnetite content. The apparent nuclear magnetic resonance intensity decreased biexponentially as a function of magnetite added. The observedT 2* values at low magnetite contents were in accordance with the predicted values from the resonance intensities and the estimated magnetic susceptibilities. TheT 1 relaxation was multiexponential in character, so a uniform penalty program was used for the analysis of distribution. At 0.2 T for1H, kaolin slurry containing less than 5.5 ppm magnetite did not differ significantly from magnetite-free clay in the longitudinal relaxation rates of water. However, higher concentrations of magnetite produced features in theT 1 distribution significantly different from those of magnetite-free clay. TheT 2 could be approximated by monoexponential relaxation, probably because the fast-decaying components relaxed before they could be recorded. The apparent transverse relaxation ratesR 2 increased linearly as a function of magnetite content. On the basis of the comparison of spin-echo and Carr-Purcell-Meiboom-Gill data, an empirical relation was derived to describe the signal loss due to diffusion. It can be expressed by a power function of magnetite amount, which is multiplied by the sum of volume-dependent and volume-independent terms.  相似文献   

7.
Spin parity effect on magnetic relaxation by quantum tunneling in the biaxial spin model is studied by taking into account the transverse local stray field. It is shown that the square root time dependence in the even resonance occurs in the presence of a distribution of transverse anisotropic parameters, while the odd resonance always shows exponential relaxation. Magnetic relaxation under a sweeping field is also studied. The variation of the relaxation curve with the increasing distribution width of the local stray field for even resonance is qualitatively different from that of the odd resonance. The theoretical result on even resonance is in agreement with experimental results on Fe8 system, while the prediction for odd resonance awaits the experimental verification.  相似文献   

8.
In this contribution, we present results from a nuclear magnetic resonance (NMR) profiling study of drying polymer solutions using polyvinylpyrrolidone (PVP) as a model system. The careful evaluation of the experimental data reveals a surprising increase in the apparent transverse relaxation time of the water phase of the drying solution over the first few hours of drying (where usually a decrease would be expected). By using additional information obtained from diffusion-weighted profiles, we can explain this finding as the result of a strong reduction of the diffusion effect on the apparent relaxation time during this time interval. Understanding this effect provides a better basis for making optimal use of profiling NMR in drying studies and avoids possible misinterpretation on the data.  相似文献   

9.
A room temperature nuclear magnetic resonance force microscope (MRFM), fitted in a 1 tesla electromagnet, has been used to measure the nuclear spin relaxation of 1H in a micron-size (70 ng) crystal of ammonium sulfate. NMR sequences, combining both pulsed and continuous wave radio-frequency fields, have allowed us to measure mechanically T2 and T1, the transverse and longitudinal spin relaxation times. Because two spin species with different T1 values are measured in our 7 μm thick crystal, magnetic resonance imaging of their spatial distribution inside the sample section have been performed. To understand quantitatively the measured signal, we carefully study the influence of spin-lattice relaxation and non-adiabaticity of the continuous-wave sequence on the intensity and time dependence of the detected signal. Received 23 February 2000  相似文献   

10.
In the present study, we investigate the relationship between the aging of a barium coating solution used in the synthesis of the precursors for YBa2Cu3O7−x -coated conductors or any oxide compound containing BaO and the transverse relaxation time measured in a nuclear magnetic resonance (NMR) experiment. The barium propionate precursor solution sample was prepared by the stepwise addition of an excess of propionic acid and ammonia to a barium acetate dispersion in methanol. All NMR relaxation experiments were performed at 20°C and a proton resonance frequency of 20 MHz. The experimental results are compared with a proposed model that assumes the reduction of the relaxation centers during the aging process. The model allows us the extraction of a characteristic aging time for the monitored sample.  相似文献   

11.
The magnetization under the spin-lattice relaxation and the nuclear magnetic resonance radiofrequency (RF) pulses is calculated for a signal RF pulse train and for a sequence of multiple RF pulse-trains. It is assumed that the transverse magnetization is zero when each RF pulse is applied. The result expressions can be grouped into two terms: a decay term, which is proportional to the initial magnetization M0, and a recovery term, which has no M0 dependence but strongly depends on the spin-lattice relaxation and the equilibrium magnetization Meq. In magnetic resonance pulse sequences using magnetization in transient state, the recovery term produces artifacts and can seriously degrade the function of the preparation sequence for slice selection, contrast weighting, phase encoding, etc. This work shows that the detrimental effect can be removed by signal averaging in an eliminative fashion. A novel fast data acquisition method for constructing the spin-lattice relaxation (T1) map is introduced. The method has two features: (i) By using eliminative averaging, the curve to fit the T1 value is a decay exponential function rather than a recovery one as in conventional techniques; therefore, the measurement of Meq is not required and the result is less susceptible to the accuracy of the inversion RF pulse. (ii) The decay exponential curve is sampled by using a sequence of multiple pulse-trains. An image is reconstructed from each train and represents a sample point of the curve. Hence a single imaging sequence can yield multiple sample points needed for fitting the T1 value in contrast to conventional techniques that require repeating the imaging sequence for various delay values but obtain only one sample point from each repetition.  相似文献   

12.
Here we report on using NMR imaging and spectroscopy in conjunction with time-of-flight tracking to noninvasively tag and monitor nuclear spins as they flow through the channels of a microfluidic chip. Any species with resolvable chemical-shift signatures can be separately monitored in a single experiment, irrespective of the optical properties of the fluids, thereby eliminating the need for foreign tracers. This is demonstrated on a chip with a mixing geometry in which two fluids converge from separate channels, and is generally applicable to any microfluidic device through which fluid flows within the nuclear spin-lattice relaxation time.  相似文献   

13.
Development of the Miniature NMR Apparatus for Edible Oil Quality Control   总被引:1,自引:0,他引:1  
Edible oils are necessary in daily cooking; therefore, it is significantly important to find an efficient scheme for its quality control. In this work, a miniature nuclear magnetic resonance (NMR) apparatus was set up for the identification of edible oils with different qualities. Experimental results show that the total transverse relaxation time of the commercial refined edible oil is shorter than the poor quality edible oil. Further data processing was performed with inverse Laplace transformation for transverse relaxation time distribution analysis. The spectra of the distribution of transverse relaxation times of different qualities edible oils are also significantly different, among which, the refined edible oil has two peaks whereas the poor quality edible oil has three peaks. The experimental results are well agreed with the theoretical analysis. As the miniature NMR apparatus was employed to analyze three suspected illegal cooking oils which were seized at the scene of inspection, the three oils were all confirmed to be poor quality edible oils. The apparatus can also detect refined edible oils adulterated with illegal cooking oils. In conclusion, the presented miniature NMR apparatus could be a potential tool for edible oil quality control.  相似文献   

14.
Continuous wave free precession (CWFP) nuclear magnetic resonance is capable of yielding quantitative and easily obtainable information concerning the kinetics of processes that change the relaxation rates of the nuclear spins through the action of some external agent. In the present application, heat flow from a natural rubber sample to a liquid nitrogen thermal bath caused a large temperature gradient leading to a non-equilibrium temperature distribution. The ensuing local changes in the relaxation rates could be monitored by the decay of the CWFP signals and, from the decays, it was possible to ascertain the prevalence of a diffusive process and to obtain an average value for the thermal diffusivity.  相似文献   

15.
By combining NMR relaxation spectroscopy and magnetic resonance imaging techniques, unsalted (us) and salted (s) caviar (Acipenser transmontanus) oocytes were characterized over a storage period of up to 90 days. The aging and the salting effects on the two major cell constituents, water and lipids, were separately assessed. T1 and T2 decays were interpreted by assuming a two-site exchange model. At Day 0, two water compartments that were not in fast exchange were identified by the T1 relaxation measurements on the us oocytes. In the s samples, T1 decay was monoexponential. During the time of storage, an increment of the free water amount was found for the us oocytes, ascribed to an increased metabolism. T1 and T2 of the s oocytes shortened as a consequence of the osmotic stress produced by salting. Selective images showed the presence of water endowed with different regional mobility that severely changed during the storage. Lipid T1 relaxation decays collected on us and s samples were found to be biexponential, and the T1 values lengthened during storage. In us and s oocytes, the increased lipid mobility with the storage was ascribed to lipolysis. Selective images of us samples showed lipids that were confined to the cytoplasm for up to 60 days of storage.  相似文献   

16.
James McConnell 《Physica A》1982,112(3):488-504
The stochastic differential equation study of nuclear magnetic relaxation by spin-rotational interactions is applied to the linear rotator model of the molecule. Inertial effects are included in the calculations, which are performed analytically. Expressions are derived for the spin-rotational contributions to the longitudinal and transverse relaxation times, and for the spin-rotational correlation time.  相似文献   

17.
We have established relationships between the experimental and theoretical absorption and dispersion line parameters for steady-state magnetic resonance, allowing us to determine both the field characteristics (amplitude of the a.c. magnetic field) and the relaxation characteristics (longitudinal and transverse relaxation times) of the object under study.  相似文献   

18.
In the present study, we investigate the relationship between the nuclear magnetic resonance relaxation rate and the hydration time in two types of masonry cement-lime mortar. The studies are performed with the mortars both in an enclosed and a standard atmosphere to monitor the air influence on cement-lime mortar hydration and setting. The constituents of the investigated mortar samples are: cement, slaked lime, sand and water. They were mixed to achieve a flow spread of 10?cm. These types of mortars are usually suitable for historical masonry maintenance, but they can also be used for modern buildings, or even for concrete structures coatings to prevent concrete carbonation. All nuclear magnetic resonance relaxation experiments were performed at 20?°C using a low-field nuclear magnetic resonance instrument operable at 20?MHz proton resonance frequency. A slowing down of the hydration kinetics is demonstrated for the samples kept in closed atmosphere conditions. The results contribute to the understanding of cement–lime mortar hydration, carbonation and setting under closed atmosphere conditions.  相似文献   

19.
An experimental protocol is described that allows two-dimensional (2D) nuclear magnetic resonance (NMR) correlations of apparent diffusion coefficient Dapp and effective transverse relaxation time T2,eff to be acquired on a bench-top spectrometer using pulsed field gradients (PFG) in such a manner as to emulate DappT2,eff correlations acquired using a well-logging tool with a fixed field gradient (FFG). This technique allows laboratory-scale NMR measurements of liquid-saturated cored rock to be compared directly to logging data obtained from the well by virtue of providing a comparable acquisition protocol and data format, and hence consistent data processing. This direct comparison supports the interpretation of the well-logging data, including a quantitative determination of the oil/brine saturation. The DT2 pulse sequence described here uses two spin echoes (2SE) with a variable echo time to encode for diffusion. The diffusion and relaxation contributions to the signal decay are then deconvolved using a 2D numerical inversion. This measurement allows shorter relaxation time components to be probed than in conventional diffusion measurements. A brief discussion of the numerical inversion algorithms available for inverting these non-rectangular data is included. The PFG-2SE sequence described is well suited to laboratory-scale studies of porous media and short T2 samples in general.  相似文献   

20.
Tomato pericarp tissue was studied by low-field nuclear magnetic resonance (NMR) relaxometry. Two kinds of experiments were performed to investigate the correlation between multi-exponential NMR relaxation and the subcellular compartments. The longitudinal (T 1) versus transverse (T 2) relaxation times were first measured on fresh samples and then the transverse relaxation time was measured on samples exposed to water stress. Four signal components were found in all experiments. The results showed that all signal components corresponded to the water in different cell compartments, and that no signal from non-exchangeable protons was present. Moreover, we demonstrated that NMR relaxation is suitable for the continuous monitoring of water rebalancing between subcellular compartments of plant tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号