首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Models of induced-gravity inflation are formulated within Supergravity employing as inflaton the Higgs field which leads to a spontaneous breaking of a \(U(1)_{B-L}\) symmetry at \(M_\mathrm{GUT}=2\cdot 10^{16}~{\mathrm{GeV}}\). We use a renormalizable superpotential, fixed by a U(1) R symmetry, and Kähler potentials which exhibit a quadratic non-minimal coupling to gravity with or without an independent kinetic mixing in the inflaton sector. In both cases we find inflationary solutions of Starobinsky type whereas in the latter case, others (more marginal) which resemble those of linear inflation arise too. In all cases the inflaton mass is predicted to be of the order of \(10^{13}~{\mathrm{GeV}}\). Extending the superpotential of the model with suitable terms, we show how the MSSM \(\mu \) parameter can be generated. Also, non-thermal leptogenesis can be successfully realized, provided that the gravitino is heavier than about \(10~{\mathrm{TeV}}\).  相似文献   

2.
Let G be a connected graph in which almost all vertices have linear degrees and let \(\mathcal {T}\) be a uniform spanning tree of G. For any fixed rooted tree F of height r we compute the asymptotic density of vertices v for which the r-ball around v in \(\mathcal {T}\) is isomorphic to F. We deduce from this that if \(\{G_n\}\) is a sequence of such graphs converging to a graphon W, then the uniform spanning tree of \(G_n\) locally converges to a multi-type branching process defined in terms of W. As an application, we prove that in a graph with linear minimum degree, with high probability, the density of leaves in a uniform spanning tree is at least \(e^{-1}-\mathsf {o}(1)\), the density of vertices of degree 2 is at most \(e^{-1}+\mathsf {o}(1)\) and the density of vertices of degree \(k\geqslant 3\) is at most \({(k-2)^{k-2} \over (k-1)! e^{k-2}} + \mathsf {o}(1)\). These bounds are sharp.  相似文献   

3.
If \(\mathcal{F}\) is a set of subgraphs F of a finite graph E we define a graph-counting polynomial \(p_\mathcal{F}(z)=\sum _{F\in \mathcal{F}}z^{|F|}\) In the present note we consider oriented graphs and discuss some cases where \(\mathcal{F}\) consists of unbranched subgraphs E. We find several situations where something can be said about the location of the zeros of \(p_\mathcal{F}\).  相似文献   

4.
The new mesons X(3940) and X(4160) have been found by Belle Collaboration in the processes \(e^+e^-\rightarrow J/\psi D^{(*)}{\bar{D}}^{(*)}\). Considering X(3940) and X(4160) as \(\eta _c(3S)\) and \(\eta _c(4S)\) states, the two-body open charm OZI-allowed strong decay of \(\eta _c(3S)\) and \(\eta _c(4S)\) are studied by the improved Bethe–Salpeter method combined with the \(^3P_0\) model. The strong decay width of \(\eta _c(3S)\) is \(\Gamma _{\eta _c(3S)}=(33.5^{+18.4}_{-15.3})\) MeV, which is close to the result of X(3940); therefore, \(\eta _c(3S)\) is a good candidate of X(3940). The strong decay width of \(\eta _c(4S)\) is \(\Gamma _{\eta _c(4S)}=(69.9^{+22.4}_{-21.1})\) MeV, considering the errors of the results, it is close to the lower limit of X(4160). But the ratio of the decay width \(\frac{\Gamma (D{\bar{D}}^*)}{\Gamma (D^*{\bar{D}}^*)}\) of \(\eta _c(4S)\) is larger than the experimental data of X(4160). According to the above analysis, \(\eta _c(4S)\) is not the candidate of X(4160), and more investigations of X(4160) is needed.  相似文献   

5.
We study the off-diagonal decay of Bergman kernels \({\Pi_{h^k}(z,w)}\) and Berezin kernels \({P_{h^k}(z,w)}\) for ample invariant line bundles over compact toric projective kähler manifolds of dimension m. When the metric is real analytic, \({P_{h^k}(z,w) \simeq k^m {\rm exp} - k D(z,w)}\) where \({D(z,w)}\) is the diastasis. When the metric is only \({C^{\infty}}\) this asymptotic cannot hold for all \({(z,w)}\) since the diastasis is not even defined for all \({(z,w)}\) close to the diagonal. Our main result is that for general toric \({C^{\infty}}\) metrics, \({P_{h^k}(z,w) \simeq k^m {\rm exp} - k D(z,w)}\) as long as w lies on the \({\mathbb{R}_+^m}\)-orbit of z, and for general \({(z,w)}\), \({{\rm lim\,sup}_{k \to \infty} \frac{1}{k} {\rm log} P_{h^k}(z,w) \,\leq\, - D(z^*,w^*)}\) where \({D(z, w^*)}\) is the diastasis between z and the translate of w by \({(S^1)^m}\) to the \({\mathbb{R}_+^m}\) orbit of z. These results are complementary to Mike Christ’s negative results showing that \({P_{h^k}(z,w)}\) does not have off-diagonal exponential decay at “speed” k if \({(z,w)}\) lies on the same \({(S^1)^m}\)-orbit.  相似文献   

6.
The higher spin Dirac operator \(\mathcal{Q}_{k,l}\) acting on functions taking values in an irreducible representation space for \(\mathfrak{so}(m)\) with highest weight \((k+\frac{1}{2},l+\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2})\), with k, l?∈?\(\mathbb{N}\) and \(k\geqslant l\), is constructed. The structure of the kernel space containing homogeneous polynomial solutions is then also studied.  相似文献   

7.
We consider supersymmetric (SUSY) and non-SUSY models of chaotic inflation based on the \(\phi ^n\) potential with \(n=2\) or 4. We show that the coexistence of an exponential non-minimal coupling to gravity \(f_\mathcal{R}=\mathrm{e}^{c_\mathcal{R}\phi ^{p}}\) with a kinetic mixing of the form \(f_{\mathrm{K}}=c_{\mathrm{K}}f_\mathcal{R}^m\) can accommodate inflationary observables favored by the Planck and Bicep2/Keck Array results for \(p=1\) and 2, \(1\le m\le 15\) and \(2.6\times 10^{-3}\le r_{\mathcal {R}\mathrm{K}}=c_\mathcal{R}/c_{\mathrm{K}}^{p/2}\le 1,\) where the upper limit is not imposed for \(p=1\). Inflation is of hilltop type and it can be attained for subplanckian inflaton values with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale. The supergravity embedding of these models is achieved employing two chiral gauge singlet supefields, a monomial superpotential and several (semi)logarithmic or semi-polynomial Kähler potentials.  相似文献   

8.
When the configuration space of a quantum particle is semibounded, the von Neumann algebra of the observables \({\mathcal{W}_+}\) is generated by a unitary group \({\{V(\beta) = {\rm exp}(-i\beta q)\},\,\beta\in\mathbb{R}}\) , and a semigroup {U(α)}, α ≥ 0, of isometries. We show that when \({\mathcal W_+}\) is a factor it is completely reducible into equivalent components, and that in each component the lower end x 0 of the spectrum of q is the same. We give an algebraic characterization of x 0 and also obtain a straightforward new proof that the irreducible representations of \({\mathcal W_+}\) with the same value of x 0 are equivalent. In the general case \({\mathcal W_+}\) decomposes into the direct integral of factors which correspond to the possible values of x 0.  相似文献   

9.
The \(B^{0}_{s}\to J/\psi f_{0}(980)\) decay offers an interesting experimental alternative to the well-known \(B^{0}_{s}\to J/\psi \phi\) channel for the search of CP-violating New-Physics contributions to \(B^{0}_{s}\)\(\bar{B}^{0}_{s}\) mixing. As the hadronic structure of the f 0(980) has not yet been settled, we take a critical look at the implications for the relevant observables and address recent experimental data. It turns out that the effective lifetime of \(B^{0}_{s}\to J/\psi f_{0}(980)\) and its mixing-induced CP asymmetry S are quite robust with respect to hadronic effects and thereby allow us to search for a large CP-violating \(B^{0}_{s}\)\(\bar{B}^{0}_{s}\) mixing phase ? s , which is tiny in the Standard Model. However, should small CP violation, i.e. in the range ?0.1?S?0, be found in \(B^{0}_{s}\to J/\psi f_{0}(980)\), it will be crucial to constrain hadronic corrections in order to distinguish possible New-Physics effects from the Standard Model. We point out that \(B^{0}_{d}\to J/\psi f_{0}(980)\), which has not yet been measured, is a key channel in this respect and discuss the physics potential of this decay.  相似文献   

10.
The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr’s idea that the empirical content of quantum physics is accessible only through classical physics, we show how a noncommutative C*-algebra of observables A induces a topos \({\mathcal{T}(A)}\) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra \({\underline{A}}\) . According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum \({\underline{\Sigma}(\underline{A})}\) in \({\mathcal{T}(A)}\) , which in our approach plays the role of the quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on \({\underline{\Sigma}}\) , and self-adjoint elements of A define continuous functions (more precisely, locale maps) from \({\underline{\Sigma}}\) to Scott’s interval domain. Noting that open subsets of \({\underline{\Sigma}(\underline{A})}\) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos \({\mathcal{T}(A)}\).These results were inspired by the topos-theoretic approach to quantum physics proposed by Butterfield and Isham, as recently generalized by Döring and Isham.  相似文献   

11.
Ultra-compact objects describe horizonless solutions of the Einstein field equations which, like black-hole spacetimes, possess null circular geodesics (closed light rings). We study analytically the physical properties of spherically symmetric ultra-compact isotropic fluid spheres with a polytropic equation of state. It is shown that these spatially regular horizonless spacetimes are generally characterized by two light rings \(\{r^{\text {inner}}_{\gamma },r^{\text {outer}}_{\gamma }\}\) with the property \(\mathcal{C}(r^{\text {inner}}_{\gamma })\le \mathcal{C}(r^{\text {outer}}_{\gamma })\), where \(\mathcal{C}\equiv m(r)/r\) is the dimensionless compactness parameter of the self-gravitating matter configurations. In particular, we prove that, while black-hole spacetimes are characterized by the lower bound \(\mathcal{C}(r^{\text {inner}}_{\gamma })\ge 1/3\), horizonless ultra-compact objects may be characterized by the opposite dimensionless relation \(\mathcal{C}(r^{\text {inner}}_{\gamma })\le 1/4\). Our results provide a simple analytical explanation for the interesting numerical results that have recently presented by Novotný et al. (Phys Rev D 95:043009, 2017).  相似文献   

12.
13.
We investigate the gauge/gravity duality between the \(\mathcal{N} = 6\) mass-deformed ABJM theory with \(\hbox {U}_k(N)\times \hbox {U}_{-k}(N)\) gauge symmetry and the 11-dimensional supergravity on LLM geometries with SO(2,1)\(\times \)SO(4)/\({\mathbb {Z}}_k\) \(\times \)SO(4)/\({\mathbb {Z}}_k\) isometry, in terms of a KK holography, which involves quadratic order field redefinitions. We establish the quadratic order KK mappings for various gauge invariant fields in order to obtain the canonical 4-dimensional gravity equations of motion and to reduce the LLM solutions to an asymptotically AdS\(_4\) gravity solutions. The non-linearity of the KK maps indicates that we can observe the true purpose of the non-linear KK holography of the LLM solutions. We read the vacuum expectation value of conformal dimension two operator from the asymptotically AdS\(_4\) gravity solutions. For the LLM solutions which are represented by square-shaped Young diagrams, we compare the vacuum expectation value obtained from the holographic procedure with the result obtained from the field theory, which is given by \(\langle \mathcal{O}^{(\Delta =2)}\rangle =\sqrt{k}N^{\frac{3}{2}}f_{(\Delta =2)}+\mathcal{O}(N)\), where \(f_{\Delta }\) is independent of N. Based on this result, we examine the gauge/gravity duality in the large N limit and finite k. We also show that the vacuum expectation values of the massive KK graviton modes are vanishing as expected by the supersymmetry.  相似文献   

14.
We study the massless field on \({D_n = D \cap \tfrac{1}{n} \mathbf{Z}^2}\), where \({D \subseteq \mathbf{R}^2}\) is a bounded domain with smooth boundary, with Hamiltonian \({\mathcal {H}(h) = \sum_{x \sim y} \mathcal {V}(h(x) - h(y))}\). The interaction \({\mathcal {V}}\) is assumed to be symmetric and uniformly convex. This is a general model for a (2 + 1)-dimensional effective interface where h represents the height. We take our boundary conditions to be a continuous perturbation of a macroscopic tilt: h(x) = n x · u + f(x) for \({x \in \partial D_n,\,u \in \mathbf{R}^2}\), and f : R 2R continuous. We prove that the fluctuations of linear functionals of h(x) about the tilt converge in the limit to a Gaussian free field on D, the standard Gaussian with respect to the weighted Dirichlet inner product \({(f,g)_\nabla^\beta = \int_D \sum_i \beta_i \partial_i f_i \partial_i g_i}\) for some explicit β = β(u). In a subsequent article, we will employ the tools developed here to resolve a conjecture of Sheffield that the zero contour lines of h are asymptotically described by SLE(4), a conformally invariant random curve.  相似文献   

15.
In this paper, the mass spectra are obtained for doubly heavy \(\Xi \) baryons, namely, \(\Xi _{cc}^{+}\), \(\Xi _{cc}^{++}\), \(\Xi _{bb}^{-}\), \(\Xi _{bb}^{0}\), \(\Xi _{bc}^{0}\) and \(\Xi _{bc}^{+}\). These baryons consist of two heavy quarks (cc, bb, and bc) with a light (d or u) quark. The ground, radial, and orbital states are calculated in the framework of the hypercentral constituent quark model with Coulomb plus linear potential. Our results are also compared with other predictions, thus, the average possible range of excited states masses of these \(\Xi \) baryons can be determined. The study of the Regge trajectories is performed in (n, \(M^{2}\)) and (J, \(M^{2}\)) planes and their slopes and intercepts are also determined. Lastly, the ground state magnetic moments of these doubly heavy baryons are also calculated.  相似文献   

16.
In this work, we investigate the decay widths and the line shapes of the open-charm radiative and pionic decays of Y(4274) with the \(D_{s}\bar{D}_{s0}(2317)\) molecular charmonium assignment. Our calculation indicates that the decay widths of \(Y(4274)\to D^{+}_{s}D^{*-}_{s}\gamma\) and \(Y(4274)\to D^{+}_{s}D^{-}_{s}\pi^{0}\) can reach up to 0.05 keV and 0.75 keV, respectively. In addition, the result of the line shape of the photon spectrum of \(Y(4274)\to D_{s}^{+} {D}_{s}^{*-} \gamma\) shows that there exists a very sharp peak near the large end point of photon energy. The line shape of the pion spectrum of \(Y(4274)\to D_{s}^{+} {D}_{s}^{*-} \pi^{0}\) is similar to that of the pion spectrum of \(Y(4274)\to D_{s}^{+} {D}_{s}^{*-} \gamma\), where we also find a very sharp peak near the large end point of pion energy. According to our calculation, we suggest further experiments to carry out the search for the open-charm radiative and pionic decays of Y(4274).  相似文献   

17.
Rather than sticking to the full U(3)3 approximate symmetry normally invoked in Minimal Flavour Violation, we analyze the consequences on the current flavour data of a suitably broken U(2)3 symmetry acting on the first two generations of quarks and squarks. A definite correlation emerges between the ΔF=2 amplitudes \(\mathcal{M}( K^{0} \to \bar{K}^{0} )\), \(\mathcal{M}( B_{d} \to \bar{B}_{d} )\) and \(\mathcal{M}( B_{s} \to \bar{B}_{s} )\), which can resolve the current tension between \(\mathcal{M}( K^{0} \to \bar{K}^{0} )\) and \(\mathcal{M}( B_{d} \to \bar{B}_{d} )\), while predicting \(\mathcal{M}( B_{s}\to \bar{B}_{s} )\). In particular, the CP violating asymmetry in B s ψφ is predicted to be positive S ψφ =0.12±0.05 and above its Standard Model value (S ψφ =0.041±0.002). The preferred region for the gluino and the left-handed sbottom masses is below about 1÷1.5 TeV. An existence proof of a dynamical model realizing the U(2)3 picture is outlined.  相似文献   

18.
We present a new method of more speedily calculating a multiplication by using the generalized Bernstein-Vazirani algorithm and many parallel quantum systems. Given the set of real values \(\{a_{1},a_{2},a_{3},\ldots ,a_{N}\}\) and a function \(g:\textbf {R}\rightarrow \{0,1\}\), we shall determine the following values \(\{g(a_{1}),g(a_{2}),g(a_{3}),\ldots , g(a_{N})\}\) simultaneously. The speed of determining the values is shown to outperform the classical case by a factor of \(N\). Next, we consider it as a number in binary representation; M1 = (g(a1),g(a2),g(a3),…,g(a N )). By using \(M\) parallel quantum systems, we have \(M\) numbers in binary representation, simultaneously. The speed of obtaining the \(M\) numbers is shown to outperform the classical case by a factor of \(M\). Finally, we calculate the product; \( M_{1}\times M_{2}\times \cdots \times M_{M}. \) The speed of obtaining the product is shown to outperform the classical case by a factor of N × M.  相似文献   

19.
In this paper, the strong form factors and coupling constants of \(D_sDK^*\) and \(D_sD^*K^*\) vertices are investigated within the three-point QCD sum rules method with and without the \(SU_{f}(3)\) symmetry. In this calculation, the contributions of the quark–quark, quark–gluon, and gluon–gluon condensate corrections are considered. As an example of specific application of these coupling constants, the branching ratio of the hadronic decay \(B^+\rightarrow {K^*}^0 \pi ^+\) is analyzed based on the one-particle-exchange which is one of the phenomenological models. In this model, B decays into a \(D_s D^*\) intermediate state, and then these two particles exchange a \(D (D^*)\) producing the final \(K^*\) and \(\pi \) mesons. In order to compute the effect of these interactions, the \(D_s D K^*\) and \(D_s D^* K^*\) form factors are needed.  相似文献   

20.
Treating the light-flavor constituent quarks and antiquarks whose momentum information is extracted from the data of soft light-flavor hadrons in pp collisions at \(\sqrt{s}=7\) TeV as the underlying source of chromatically neutralizing the charm quarks of low transverse momenta (\(p_{T}\)), we show that the experimental data of \(p_{T}\) spectra of single-charm hadrons \(D^{0,+}\), \(D^{*+}\) \(D_{s}^{+}\), \(\varLambda _{c}^{+}\) and \(\varXi _{c}^{0}\) at mid-rapidity in the low \(p_{T}\) range (\(2\lesssim p_{T}\lesssim 7\) GeV/c) in pp collisions at \(\sqrt{s}=7\) TeV can be well understood by the equal-velocity combination of perturbatively created charm quarks and those light-flavor constituent quarks and antiquarks. This suggests a possible new scenario of low \(p_{T}\) charm quark hadronization, in contrast to the traditional fragmentation mechanism, in pp collisions at LHC energies. This is also another support for the exhibition of the soft constituent quark degrees of freedom for the small parton system created in pp collisions at LHC energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号