首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The black hole could have a primordial origin if its mass is less than \(1M_\odot \). The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band \(10^{8}\)\(10^{10}\,\mathrm {Hz}\). It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around \(10^{-7}\). Also, the upper limit of the amplitude ranges from \(10^{-31.5}\) to \(10^{-29.5}\). The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band \(10^{8}\)\(10^{10}\,\mathrm {Hz}\) is derived, which ranges from 1 to \(10^2\,\mathrm {s^{-1}}\). The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band \(10^{8}\)\(10^{10}\,\mathrm {Hz}\). Our results indicate that the SGWB in the high frequency band \(10^{8}\)\(10^{10}\,\mathrm {Hz}\) is more likely to be detected by the high frequency gravitational-wave detector.  相似文献   

2.
In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild–de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle \(\alpha \) of the light ray by constructing a quadrilateral \(\varSigma ^4\) on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) determined by the optical metric \(\bar{g}_{ij}\). On the basis of the definition of the total deflection angle \(\alpha \) and the Gauss–Bonnet theorem, we derive two formulas to calculate the total deflection angle \(\alpha \); (1) the angular formula that uses four angles determined on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) or the curved \((r, \phi )\) subspace \({\mathscr {M}}^\mathrm{sub}\) being a slice of constant time t and (2) the integral formula on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) which is the areal integral of the Gaussian curvature K in the area of a quadrilateral \(\varSigma ^4\) and the line integral of the geodesic curvature \(\kappa _g\) along the curve \(C_{\varGamma }\). As the curve \(C_{\varGamma }\), we introduce the unperturbed reference line that is the null geodesic \(\varGamma \) on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting \(\varGamma \) vertically onto the curved \((r, \phi )\) subspace \({\mathscr {M}}^\mathrm{sub}\). We demonstrate that the two formulas give the same total deflection angle \(\alpha \) for the Schwarzschild and the Schwarzschild–de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein–Shapiro’s formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild–de Sitter case, there appear order \({\mathscr {O}}(\varLambda m)\) terms in addition to the Schwarzschild-like part, while order \({\mathscr {O}}(\varLambda )\) terms disappear.  相似文献   

3.
In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh–Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein–Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (\(\epsilon ^{2}\)) and the density of static spherically symmetric quintessence-like matter (\(\rho _{0}\)) were explicitly plotted. The results show that, when the deficit solid angle (\(\epsilon ^{2}\)) and the density of static spherically symmetric quintessence-like matter at \(r=1\) (\(\rho _{0}\)) vanish \((\rho _{0}=\epsilon =0)\), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing \(\rho _{0}\), the transition points are shifted to lower entropies. The same thing is observed when increasing \(\epsilon ^{2}\). In the absence of quintessence-like matter (\(\rho _{0}=0\)), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing \(\rho _{0}\) or \((\epsilon ^2)\).  相似文献   

4.
5.
We study the screening length \(L_{\mathrm{max}}\) of a moving quark–antiquark pair in a hot plasma, which lives in a two sphere, \(S^2\), using the AdS/CFT correspondence in which the corresponding background metric is the four-dimensional Schwarzschild–AdS black hole. The geodesic of both ends of the string at the boundary, interpreted as the quark–antiquark pair, is given by a stationary motion in the equatorial plane by which the separation length L of both ends of the string is parallel to the angular velocity \(\omega \). The screening length and total energy H of the quark–antiquark pair are computed numerically and show that the plots are bounded from below by some functions related to the momentum transfer \(P_c\) of the drag force configuration. We compare the result by computing the screening length in the reference frame of the moving quark–antiquark pair, in which the background metrics are “Boost-AdS” and Kerr–AdS black holes. Comparing both black holes, we argue that the mass parameters \(M_{\mathrm{Sch}}\) of the Schwarzschild–AdS black hole and \(M_{\mathrm{Kerr}}\) of the Kerr–AdS black hole are related at high temperature by \(M_{\mathrm{Kerr}}=M_{\mathrm{Sch}}(1-a^2l^2)^{3/2}\), where a is the angular momentum parameter and l is the AdS curvature.  相似文献   

6.
O. Azzolini  M. T. Barrera  J. W. Beeman  F. Bellini  M. Beretta  M. Biassoni  E. Bossio  C. Brofferio  C. Bucci  L. Canonica  S. Capelli  L. Cardani  P. Carniti  N. Casali  L. Cassina  M. Clemenza  O. Cremonesi  A. Cruciani  A. D’Addabbo  I. Dafinei  S. Di Domizio  F. Ferroni  L. Gironi  A. Giuliani  P. Gorla  C. Gotti  G. Keppel  M. Martinez  S. Morganti  S. Nagorny  M. Nastasi  S. Nisi  C. Nones  D. Orlandi  L. Pagnanini  M. Pallavicini  V. Palmieri  L. Pattavina  M. Pavan  G. Pessina  V. Pettinacci  S. Pirro  S. Pozzi  E. Previtali  A. Puiu  C. Rusconi  K. Schäffner  C. Tomei  M. Vignati  A. Zolotarova 《The European Physical Journal C - Particles and Fields》2018,78(11):888
The CUPID-0 experiment searches for double beta decay using cryogenic calorimeters with double (heat and light) read-out. The detector, consisting of 24 ZnSe crystals 95\(\%\) enriched in \(^{82}\)Se and two natural ZnSe crystals, started data-taking in 2017 at Laboratori Nazionali del Gran Sasso. We present the search for the neutrino-less double beta decay of \(^{82}\)Se into the 0\(_1^+\), 2\(_1^+\) and 2\(_2^+\) excited states of \(^{82}\)Kr with an exposure of 5.74 kg\(\cdot \)yr (2.24\(\times \)10\(^{25}\) emitters\(\cdot \)yr). We found no evidence of the decays and set the most stringent limits on the widths of these processes: \(\varGamma \)(\(^{82}\)Se \(\rightarrow ^{82}\)Kr\(_{0_1^+}\))8.55\(\times \)10\(^{-24}\) yr\(^{-1}\), \(\varGamma \) (\(^{82}\) Se \(\rightarrow ^{82}\) Kr \(_{2_1^+}\))\(\,{<}\,6.25 \,{\times }\,10^{-24}\) yr\(^{-1}\), \(\varGamma \)(\(^{82}\)Se \(\rightarrow ^{82}\)Kr\(_{2_2^+}\))8.25\(\times \)10\(^{-24}\) yr\(^{-1}\) (90\(\%\) credible interval).  相似文献   

7.
8.
We investigate static and spherically symmetric black hole solutions in the generalized Proca theory which corresponds to the generalization of the shift-symmetric scalar–tensor Horndeski theory to the vector–tensor theory. Any solution obtained in this paper possesses a constant spacetime norm of the vector field, \(X:=-\frac{1}{2}g^{\mu \nu }A_\mu A_\nu =X_0=\mathrm{constant}\). The solutions in the theory with generalized quartic coupling \(G_4(X)\) generalize the stealth Schwarzschild and the Schwarzschild- (anti-) de Sitter solutions obtained in the theory with the nonminimal coupling to the Einstein tensor \(G^{\mu \nu } A_\mu A_\nu \). While in the vector–tensor theory with the coupling \(G^{\mu \nu }A_\mu A_\nu \) the electric charge does not explicitly affect the spacetime geometry, in more general cases with nonzero \(G_{4XX}(X_0)\ne 0\) this property does not hold in general. The solutions in the theory with generalized cubic coupling \(G_3(X)\) are given by the Schwarzschild- (anti-) de Sitter spacetime, where the dependence on \(G_3(X)\) does not appear in the metric function.  相似文献   

9.
In \((2+1)\)-dimensional AdS spacetime, we obtain new exact black hole solutions, including two different models (power parameter \(k=1\) and \(k\ne 1\)), in the Einstein–Power–Maxwell (EPM) theory with nonminimally coupled scalar field. For the charged hairy black hole with \(k\ne 1\), we find that the solution contains a curvature singularity at the origin and is nonconformally flat. The horizon structures are identified, which indicates the physically acceptable lower bound of mass in according to the existence of black hole solutions. Later, the null geodesic equations for photon around this charged hairy black hole are also discussed in detail.  相似文献   

10.
We consider the X(3872) resonance as a \(J^\mathrm{{PC}}=1^{++}\) \(D\bar{D}^*\) hadronic molecule. According to heavy quark spin symmetry, there will exist a partner with quantum numbers \(2^{++}\), \(X_{2}\), which would be a \(D^*\bar{D}^*\) loosely bound state. The \(X_{2}\) is expected to decay dominantly into \(D\bar{D}\), \(D\bar{D}^*\) and \(\bar{D} D^*\) in d-wave. In this work, we calculate the decay widths of the \(X_{2}\) resonance into the above channels, as well as those of its bottom partner, \(X_{b2}\), the mass of which comes from assuming heavy flavor symmetry for the contact terms. We find partial widths of the \(X_{2}\) and \(X_{b2}\) of the order of a few MeV. Finally, we also study the radiative \(X_2\rightarrow D\bar{D}^{*}\gamma \) and \(X_{b2} \rightarrow \bar{B} B^{*}\gamma \) decays. These decay modes are more sensitive to the long-distance structure of the resonances and to the \(D\bar{D}^{*}\) or \(B\bar{B}^{*}\) final state interaction.  相似文献   

11.
12.
We study the backwards-in-time stability of the Schwarzschild singularity from a dynamical PDE point of view. More precisely, considering a spacelike hypersurface \({\Sigma_0}\) in the interior of the black hole region, tangent to the singular hypersurface \({\{r = 0\}}\) at a single sphere, we study the problem of perturbing the Schwarzschild data on \({\Sigma_0}\) and solving the Einstein vacuum equations backwards in time. We obtain a local backwards well-posedness result for small perturbations lying in certain weighted Sobolev spaces. No symmetry assumptions are imposed. The perturbed spacetimes all have a singularity at a “collapsed” sphere on \({\Sigma_0}\), where the leading asymptotics of the curvature and the metric match those of their Schwarzschild counterparts to a suitably high order. As in the Schwarzschild backward evolution, the pinched initial hypersurface \({\Sigma_0}\) ‘opens up’ instantly, becoming a regular spacelike (cylindrical) hypersurface. This result thus yields classes of examples of non-symmetric vacuum spacetimes, evolving forward-in-time from regular initial data, which form a Schwarzschild type singularity at a collapsed sphere. We rely on a precise asymptotic analysis of the Schwarzschild geometry near the singularity which turns out to be at the threshold that our energy methods can handle.  相似文献   

13.
BaZrO\(_{3}\):Eu\(^{3+}\) perovskite phosphors were successfully synthesized by employing combustion method. The structure, morphology and optical properties of material have been characterized by X-ray diffraction, scanning electron microscopy and fluorescence spectrometry. The XRD results indicate that crystals of BaZrO\(_{3}\):Eu\(^{3+}\) belongs to cubic perovskite system. The phosphors can be effectively excited by UV light and the emission spectra results indicate that reddish-orange luminescence dominates due to parity allowed magnetic dipole transition \(^{5}\)D\(_{0}\rightarrow ^{7}\)F\(_{1}\) located at 593 nm. The prepared phosphor show remarkable luminescent properties which find applications in field emission displays and plasma display panels.  相似文献   

14.
We consider the Heisenberg uncertainty principle of position and momentum in 3-dimensional spaces of constant curvature K. The uncertainty of position is defined coordinate independent by the geodesic radius of spherical domains in which the particle is localized after a von Neumann–Lüders projection. By applying mathematical standard results from spectral analysis on manifolds, we obtain the largest lower bound of the momentum deviation in terms of the geodesic radius and K. For hyperbolic spaces, we also obtain a global lower bound \(\sigma _p\ge |K|^\frac{1}{2}\hbar \), which is non-zero and independent of the uncertainty in position. Finally, the lower bound for the Schwarzschild radius of a static black hole is derived and given by \(r_s\ge 2\,l_P\), where \(l_P\) is the Planck length.  相似文献   

15.
We consider the scattering of kinks of the sinh-deformed \(\varphi ^4\) model, which is obtained from the well-known \(\varphi ^4\) model by means of the deformation procedure. Depending on the initial velocity \(v_\mathrm {in}\) of the colliding kinks, different collision scenarios are realized. There is a critical value \(v_\mathrm {cr}\) of the initial velocity, which separates the regime of reflection (at \(v_\mathrm {in}>v_\mathrm {cr}\)) and that of a complicated interaction (at \(v_\mathrm {in}<v_\mathrm {cr}\)) with kinks’ capture and escape windows. Besides that, at \(v_\mathrm {in}\) below \(v_\mathrm {cr}\) we observe the formation of a bound state of two oscillons, as well as their escape at some values of \(v_\mathrm {in}\).  相似文献   

16.
We have measured the cross-section for the \(K_{S}^{0}\) production from beryllium target using 120 \(\hbox {GeV}/\hbox {c}\) protons beam interactions at the main injector particle production (MIPP) experiment at Fermilab. The data were collected with target having a thickness of 0.94% of the nuclear interaction length. The \(K_{S}^{0}\) inclusive differential cross-section in bins of momenta is presented covering momentum range from \(0.4\,\hbox {GeV}/\hbox {c}\) to \(30\,\hbox {GeV}/\hbox {c}\). The measured inclusive \(K_{S}^{0}\) production cross-section amounts to \(39.54\pm 1.46\delta _{\mathrm {stat}}\pm 6.97\delta _{\mathrm {syst}}\) mb and the value is compared with the prediction of FLUKA hadron production model.  相似文献   

17.
We investigate the horizon structure and ergosphere in a rotating Bardeen regular black hole, which has an additional parameter (g) due to the magnetic charge, apart from the mass (M) and the rotation parameter (a). Interestingly, for each value of the parameter g, there exists a critical rotation parameter (\(a=a_{E}\)), which corresponds to an extremal black hole with degenerate horizons, while for \(a<a_{E}\) it describes a non-extremal black hole with two horizons, and no black hole for \(a>a_{E}\). We find that the extremal value \(a_E\) is also influenced by the parameter g, and so is the ergosphere. While the value of \(a_E\) remarkably decreases when compared with the Kerr black hole, the ergosphere becomes thicker with the increase in g. We also study the collision of two equal mass particles near the horizon of this black hole, and explicitly show the effect of the parameter g. The center-of-mass energy (\(E_\mathrm{CM}\)) not only depend on the rotation parameter a, but also on the parameter g. It is demonstrated that the \(E_\mathrm{CM}\) could be arbitrarily high in the extremal cases when one of the colliding particles has a critical angular momentum, thereby suggesting that the rotating Bardeen regular black hole can act as a particle accelerator.  相似文献   

18.
In-situ production of radioisotopes by cosmic muon interactions may generate a non-negligible background for deep underground rare event searches. Previous Monte Carlo studies for the Gerda experiment at Lngs identified the delayed decays of \(^{77}\)Ge and its metastable state \(^{77m}\)Ge as dominant cosmogenic background in the search for neutrinoless double beta decay of \(^{76}\)Ge. This might limit the sensitivity of next generation experiments aiming for increased \(^{76}\)Ge mass at background-free conditions and thereby define a minimum depth requirement. A re-evaluation of the \(^{77(m)}\)Ge background for the Gerda experiment has been carried out by a set of Monte Carlo simulations. The obtained \(^{77(m)}\)Ge production rate is (\(0.21\pm 0.01\)) nuclei/(kg\(\cdot \)year). After application of state-of-the-art active background suppression techniques and simple delayed coincidence cuts this corresponds to a background contribution of \((2.7\pm 0.3)\times 10^{-6}\) cts/(keV\(\cdot \)kg\(\cdot \)year). The suppression achieved by this strategy equals an effective muon flux reduction of more than one order of magnitude. This virtual depth increase opens the way for next generation rare event searches.  相似文献   

19.
The phenomenological study of neutral heavy gauge boson (\(Z^{\prime }_{B-L}\)) of the minimal \(B-L\) extension was done in the context of the LHC, on the dimuon production channel. The study begins with the LEP-II constraints on \(Z'\) searches, and the dimuon events are simulated at the parton level at CM energies of 7 TeV and 8 TeV and studied with an integrated luminosity of 1.21 fb\(^{-1}\) and 20.5 fb\(^{-1}\) respectively. Later, the ATLAS detector-specific cuts unique to the muon pairs are imposed followed by the signal selection cuts on the invariant mass of the dimuon which restrict the events that are to be passed for signal-background analysis, that are finally compared with the ATLAS data, and accounted for no experimental detection of \(Z^{\prime }_{B-L}\) boson. It has been simulated further at 14 TeV CM energy with an integrated luminosity of 300 fb\(^{-1}\) to predict a possible discovery of this \(B-L\) neutral-heavy gauge boson with a mass corresponding to 1.5 TeV and a \(Z'\) coupling strength of 0.2 based on the signal-background analysis.  相似文献   

20.
We consider the limiting spectral distribution of matrices of the form \(\frac{1}{2b_{n}+1} (R + X)(R + X)^{*}\), where X is an \(n\times n\) band matrix of bandwidth \(b_{n}\) and R is a non random band matrix of bandwidth \(b_{n}\). We show that the Stieltjes transform of ESD of such matrices converges to the Stieltjes transform of a non-random measure. And the limiting Stieltjes transform satisfies an integral equation. For \(R=0\), the integral equation yields the Stieltjes transform of the Marchenko–Pastur law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号