首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In \((2+1)\)-dimensional AdS spacetime, we obtain new exact black hole solutions, including two different models (power parameter \(k=1\) and \(k\ne 1\)), in the Einstein–Power–Maxwell (EPM) theory with nonminimally coupled scalar field. For the charged hairy black hole with \(k\ne 1\), we find that the solution contains a curvature singularity at the origin and is nonconformally flat. The horizon structures are identified, which indicates the physically acceptable lower bound of mass in according to the existence of black hole solutions. Later, the null geodesic equations for photon around this charged hairy black hole are also discussed in detail.  相似文献   

2.
The regular Hayward model describes a non-singular black hole space-time. By analyzing the behaviors of effective potential and solving the equation of orbital motion, we investigate the time-like and null geodesics in the regular Hayward black hole space-time. Through detailed analyses of corresponding effective potentials for massive particles and photons, all possible orbits are numerically simulated. The results show that there may exist four orbital types in the time-like geodesics structure: planetary orbits, circular orbits, escape orbits and absorbing orbits. In addition, when \(\ell \), a convenient encoding of the central energy density \(3/8\pi \ell ^{2}\), is 0.6M, and b is 3.9512M as a specific value of angular momentum, escape orbits exist only under \(b>3.9512M\). The precession direction is also associated with values of b. With \(b=3.70M\) the bound orbits shift clockwise but counter-clockwise with \(b=5.00M\) in the regular Hayward black hole space-time. We also find that the structure of null geodesics is simpler than that of time-like geodesics. There only exist three kinds of orbits (unstable circle orbits, escape orbits and absorbing orbits).  相似文献   

3.
We investigate the effect of thermal fluctuations on the thermodynamics of a Lovelock-AdS black hole. Taking the first order logarithmic correction term in entropy we analyze the thermodynamic potentials like Helmholtz free energy, enthalpy and Gibbs free energy. We find that all the thermodynamic potentials are decreasing functions of correction coefficient \(\alpha \). We also examined this correction coefficient must be positive by analysing \(P{-}V\) diagram. Further we study the \(P{-}V\) criticality and stability and find that presence of logarithmic correction in it is necessary to have critical points and stable phases. When \(P{-}V\) criticality appears, we calculate the critical volume \(V_c\), critical pressure \(P_c\) and critical temperature \(T_c\) using different equations and show that there is no critical point for this black hole without thermal fluctuations. We also study the geometrothermodynamics of this kind of black holes. The Ricci scalar of the Ruppeiner metric is graphically analysed.  相似文献   

4.
5.
We study the phase transition of rainbow inspired higher dimensional Schwarzschild black hole incorporating the effects of the generalized uncertainty principle. First, we obtain the relation between the mass and Hawking temperature of the rainbow inspired black hole taking into account the effects of the modified dispersion relation and the generalized uncertainty principle. The heat capacity is then computed from this relation which reveals that there are remnants. The entropy of the black hole is next obtained in \(3+1\) and \(4+1\)-dimensions and is found to have logarithmic corrections only in \(3+1\)-dimensions. We further investigate the local temperature, free energy and stability of the black hole in an isothermal cavity. From the analysis of the free energy, we find that there are two Hawking–Page type phase transitions in \(3+1\) and \(4+1\)-dimensions if we take into account the generalized uncertainty principle. However, in the absence of the generalized uncertainty principle, only one Hawking–Page type phase transition exists in spacetime dimensions greater than four.  相似文献   

6.
We construct solutions of higher-dimensional Einstein gravity coupled to nonlinear \(\sigma \)-model with cosmological constant. The \(\sigma \)-model can be perceived as exterior configuration of a spontaneously-broken \(SO(D-1)\) global higher-codimensional “monopole”. Here we allow the kinetic term of the \(\sigma \)-model to be noncanonical; in particular we specifically study a quadratic-power-law type. This is some possible higher-dimensional generalization of the Bariola–Vilenkin (BV) solutions with k-global monopole studied recently. The solutions can be perceived as the exterior solution of a black hole swallowing up noncanonical global defects. Even in the absence of comological constant its surrounding spacetime is asymptotically non-flat; it suffers from deficit solid angle. We discuss the corresponding horizons. For \(\Lambda >0\) in 4d there can exist three extremal conditions (the cold, ultracold, and Nariai black holes), while in higher-than-four dimensions the extremal black hole is only Nariai. For \(\Lambda <0\) we only have black hole solutions with one horizon, save for the 4d case where there can exist two horizons. We give constraints on the mass and the symmetry-breaking scale for the existence of all the extremal cases. In addition, we also obtain factorized solutions, whose topology is the direct product of two-dimensional spaces of constant curvature (\(M_2\), \(dS_2\), or \(AdS_2\)) with (D-2)-sphere. We study all possible factorized channels.  相似文献   

7.
In this paper, we study the heat engine where a charged AdS black hole surrounded by dark energy is the working substance and the mechanical work is done via the PdV term in the first law of black hole thermodynamics in the extended phase space. We first investigate the effects of a kind of dark energy (quintessence field in this paper) on the efficiency of the RN-AdS black holes as the heat engine defined as a rectangular closed path in the PV plane. We get the exact efficiency formula and find that the quintessence field can improve the heat engine efficiency, which will increase as the field density \(\rho _q\) grows. At some fixed parameters, we find that a larger volume difference between the smaller black holes(\(V_1\)) and the bigger black holes(\(V_2\) ) will lead to a lower efficiency, while the bigger pressure difference \(P_1-P_4\) will make the efficiency higher, but it is always smaller than 1 and will never be beyond the Carnot efficiency, which is the maximum value of the efficiency constrained by thermodynamics laws; this is consistent to the heat engine in traditional thermodynamics. After making some special choices for the thermodynamical quantities, we find that the increase of the electric charge Q and the normalization factor a can also promote the heat engine efficiency, which would infinitely approach the Carnot limit when Q or a goes to infinity.  相似文献   

8.
We investigate the horizon structure and ergosphere in a rotating Bardeen regular black hole, which has an additional parameter (g) due to the magnetic charge, apart from the mass (M) and the rotation parameter (a). Interestingly, for each value of the parameter g, there exists a critical rotation parameter (\(a=a_{E}\)), which corresponds to an extremal black hole with degenerate horizons, while for \(a<a_{E}\) it describes a non-extremal black hole with two horizons, and no black hole for \(a>a_{E}\). We find that the extremal value \(a_E\) is also influenced by the parameter g, and so is the ergosphere. While the value of \(a_E\) remarkably decreases when compared with the Kerr black hole, the ergosphere becomes thicker with the increase in g. We also study the collision of two equal mass particles near the horizon of this black hole, and explicitly show the effect of the parameter g. The center-of-mass energy (\(E_\mathrm{CM}\)) not only depend on the rotation parameter a, but also on the parameter g. It is demonstrated that the \(E_\mathrm{CM}\) could be arbitrarily high in the extremal cases when one of the colliding particles has a critical angular momentum, thereby suggesting that the rotating Bardeen regular black hole can act as a particle accelerator.  相似文献   

9.
We show that the low frequency absorption cross section of minimally coupled test massless scalar fields by extremal spherically symmetric black holes in d dimensions is equal to the horizon area, even in the presence of string-theoretical \(\alpha '\) corrections. Classically one has the relation \(\sigma = 4 GS\) between that absorption cross section and the black hole entropy. By comparing in each case the values of the horizon area and Wald’s entropy, we discuss the validity of such relation in the presence of higher derivative corrections for extremal black holes in many different contexts: in the presence of electric and magnetic charges; for nonsupersymmetric and supersymmetric black holes; in \(d=4\) and \(d=5\) dimensions. The examples we consider seem to indicate that this relation is not verified in the presence of \(\alpha '\) corrections in general, although being valid in some specific cases (electrically charged maximally supersymmetric black holes in \(d=5\)). We argue that the relation \(\sigma = 4 GS\) should in general be valid for the absorption cross section of scalar fields which, although being independent from the black hole solution, have their origin from string theory, and therefore are not minimally coupled.  相似文献   

10.
In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh–Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein–Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (\(\epsilon ^{2}\)) and the density of static spherically symmetric quintessence-like matter (\(\rho _{0}\)) were explicitly plotted. The results show that, when the deficit solid angle (\(\epsilon ^{2}\)) and the density of static spherically symmetric quintessence-like matter at \(r=1\) (\(\rho _{0}\)) vanish \((\rho _{0}=\epsilon =0)\), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing \(\rho _{0}\), the transition points are shifted to lower entropies. The same thing is observed when increasing \(\epsilon ^{2}\). In the absence of quintessence-like matter (\(\rho _{0}=0\)), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing \(\rho _{0}\) or \((\epsilon ^2)\).  相似文献   

11.
In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature \(T_{H}\), scalar wave frequency \(\omega \), Bekenstein–Hawking entropy \(S_{BH}\), angular momentum m and coupling constant \(\xi \).  相似文献   

12.
We obtain local well-posedness for the one-dimensional Schrödinger–Debye interactions in nonlinear optics in the spaces \(L^2\times L^p,\; 1\le p < \infty \). When \(p=1\) we show that the local solutions extend globally. In the focusing regime, we consider a family of solutions \(\{(u_{\tau }, v_{\tau })\}_{\tau >0}\) in \( H^1\times H^1\) associated to an initial data family \(\{(u_{\tau _0},v_{\tau _0})\}_{\tau >0}\) uniformly bounded in \(H^1\times L^2\), where \(\tau \) is a small response time parameter. We prove that \(\left( u_{\tau }, v_{\tau }\right) \) converges to \(\left( u, -|u|^2\right) \) in the space \(L^{\infty }_{[0, T]}L^2_x\times L^1_{[0, T]}L^2_x\) whenever \(u_{\tau _0}\) converges to \(u_0\) in \(H^1\) as long as \(\tau \) tends to 0, where u is the solution of the one-dimensional cubic nonlinear Schrödinger equation with the initial data \(u_0\). The convergence of \(v_{\tau }\) for \(-|u|^2\) in the space \(L^{\infty }_{[0, T]}L^2_x\) is shown under compatibility conditions of the initial data. For non-compatible data, we prove convergence except for a corrector term which looks like an initial layer phenomenon.  相似文献   

13.
We study the screening length \(L_{\mathrm{max}}\) of a moving quark–antiquark pair in a hot plasma, which lives in a two sphere, \(S^2\), using the AdS/CFT correspondence in which the corresponding background metric is the four-dimensional Schwarzschild–AdS black hole. The geodesic of both ends of the string at the boundary, interpreted as the quark–antiquark pair, is given by a stationary motion in the equatorial plane by which the separation length L of both ends of the string is parallel to the angular velocity \(\omega \). The screening length and total energy H of the quark–antiquark pair are computed numerically and show that the plots are bounded from below by some functions related to the momentum transfer \(P_c\) of the drag force configuration. We compare the result by computing the screening length in the reference frame of the moving quark–antiquark pair, in which the background metrics are “Boost-AdS” and Kerr–AdS black holes. Comparing both black holes, we argue that the mass parameters \(M_{\mathrm{Sch}}\) of the Schwarzschild–AdS black hole and \(M_{\mathrm{Kerr}}\) of the Kerr–AdS black hole are related at high temperature by \(M_{\mathrm{Kerr}}=M_{\mathrm{Sch}}(1-a^2l^2)^{3/2}\), where a is the angular momentum parameter and l is the AdS curvature.  相似文献   

14.
In General Relativity, addressing coupling to a non-linear electromagnetic field, together with a negative cosmological constant, we obtain the general static spherical symmetric black hole solution with magnetic charges, which is asymptotic to anti-de Sitter (AdS) space-times. In particular, for a degenerate case the solution becomes a Hayward–AdS black hole, which is regular everywhere in the full space-time. The existence of such a regular black hole solution preserves the weak energy condition, while the strong energy condition is violated. We then derive the first law and the Smarr formula of the black hole solution. We further discuss its thermodynamic properties and study the critical phenomena in the extended phase space where the cosmological constant is treated as a thermodynamic variable as well as the parameter associated with the non-linear electrodynamics. We obtain many interesting results such as: the Maxwell equal area law in the \(P{-}V\) (or \(S{-}T\)) diagram is violated and consequently the critical point \((T_*,P_*)\) of the first order small–large black hole transition does not coincide with the inflection point (\(T_c,P_c\)) of the isotherms; the Clapeyron equation describing the coexistence curve of the Van der Waals (vdW) fluid is no longer valid; the heat capacity at constant pressure is finite at the critical point; the various exponents near the critical point are also different from those of the vdW fluid.  相似文献   

15.
16.
The K--induced production of \( \Lambda\)(1405) is investigated in K - d \( \rightarrow\) \( \pi\) \( \Sigma\) n reactions based on coupled-channels chiral dynamics, in order to discuss the resonance position of the \( \Lambda\)(1405) in the \( \bar{{K}}\) N channel. We find that the K - d \( \rightarrow\) \( \Lambda\)(1405)n process favors the production of \( \Lambda\)(1405) initiated by the \( \bar{{K}}\) N channel. The present approach indicates that the \( \Lambda\)(1405) -resonance position is 1420MeV rather than 1405MeV in the \( \pi\) \( \Sigma\) invariant-mass spectra of K - d \( \rightarrow\) \( \pi\) \( \Sigma\) n reactions. This is consistent with an observed spectrum of the K - d \( \rightarrow\) \( \pi^{{+}}_{}\) \( \Sigma^{{-}}_{}\) n with 686-844MeV/c incident K- by bubble chamber experiments done in the 70s. Our model also reproduces the measured \( \Lambda\)(1405) production cross-section.  相似文献   

17.
O. Azzolini  M. T. Barrera  J. W. Beeman  F. Bellini  M. Beretta  M. Biassoni  E. Bossio  C. Brofferio  C. Bucci  L. Canonica  S. Capelli  L. Cardani  P. Carniti  N. Casali  L. Cassina  M. Clemenza  O. Cremonesi  A. Cruciani  A. D’Addabbo  I. Dafinei  S. Di Domizio  F. Ferroni  L. Gironi  A. Giuliani  P. Gorla  C. Gotti  G. Keppel  M. Martinez  S. Morganti  S. Nagorny  M. Nastasi  S. Nisi  C. Nones  D. Orlandi  L. Pagnanini  M. Pallavicini  V. Palmieri  L. Pattavina  M. Pavan  G. Pessina  V. Pettinacci  S. Pirro  S. Pozzi  E. Previtali  A. Puiu  C. Rusconi  K. Schäffner  C. Tomei  M. Vignati  A. Zolotarova 《The European Physical Journal C - Particles and Fields》2018,78(11):888
The CUPID-0 experiment searches for double beta decay using cryogenic calorimeters with double (heat and light) read-out. The detector, consisting of 24 ZnSe crystals 95\(\%\) enriched in \(^{82}\)Se and two natural ZnSe crystals, started data-taking in 2017 at Laboratori Nazionali del Gran Sasso. We present the search for the neutrino-less double beta decay of \(^{82}\)Se into the 0\(_1^+\), 2\(_1^+\) and 2\(_2^+\) excited states of \(^{82}\)Kr with an exposure of 5.74 kg\(\cdot \)yr (2.24\(\times \)10\(^{25}\) emitters\(\cdot \)yr). We found no evidence of the decays and set the most stringent limits on the widths of these processes: \(\varGamma \)(\(^{82}\)Se \(\rightarrow ^{82}\)Kr\(_{0_1^+}\))8.55\(\times \)10\(^{-24}\) yr\(^{-1}\), \(\varGamma \) (\(^{82}\) Se \(\rightarrow ^{82}\) Kr \(_{2_1^+}\))\(\,{<}\,6.25 \,{\times }\,10^{-24}\) yr\(^{-1}\), \(\varGamma \)(\(^{82}\)Se \(\rightarrow ^{82}\)Kr\(_{2_2^+}\))8.25\(\times \)10\(^{-24}\) yr\(^{-1}\) (90\(\%\) credible interval).  相似文献   

18.
In a recent paper Cañate (Class Quantum Grav 35:025018, 2018) proved a no hair theorem to static and spherically symmetric or stationary axisymmetric black holes in general f(R) gravity. The theorem applies for isolated asymptotically flat or asymptotically de Sitter black holes and also in the case when vacuum is replaced by a minimally coupled source having a traceless energy momentum tensor. This theorem excludes the case of pure quadratic gravity, \(f(R) = R^2\). In this paper we use the scalar tensor representation of general f(R) theory to show that there are no hairy black hole in pure \(R^2\) gravity. The result is limited to spherically symmetric black holes but does not assume asymptotic flatness or de-Sitter asymptotics as in most of the no-hair theorems encountered in the literature. We include an example of a static and spherically symmetric black hole in \(R^2\) gravity with a conformally coupled scalar field having a Higgs-type quartic potential.  相似文献   

19.
The Rastall gravity is the modified Einstein general relativity, in which the energy-momentum conservation law is generalized to \(T^{\mu \nu }_{~~;\mu }=\lambda R^{,\nu }\). In this work, we derive the Kerr–Newman-AdS (KN-AdS) black hole solutions surrounded by the perfect fluid matter in the Rastall gravity using the Newman–Janis method and Mathematica package. We then discuss the black hole properties surrounded by two kinds of specific perfect fluid matter, the dark energy (\(\omega =-\,2/3\)) and the perfect fluid dark matter (\(\omega =-\,1/3\)). Firstly, the Rastall parameter \(\kappa \lambda \) could be constrained by the weak energy condition and strong energy condition. Secondly, by analyzing the number of roots in the horizon equation, we get the range of the perfect fluid matter intensity \(\alpha \), which depends on the black hole mass M and the Rastall parameter \(\kappa \lambda \). Thirdly, we study the influence of the perfect fluid dark matter and dark energy on the ergosphere. We find that the perfect fluid dark matter has significant effects on the ergosphere size, while the dark energy has smaller effects. Finally, we find that the perfect fluid matter does not change the singularity of the black hole. Furthermore, we investigate the rotation velocity in the equatorial plane for the KN-AdS black hole with dark energy and perfect fluid dark matter. We propose that the rotation curve diversity in Low Surface Brightness galaxies could be explained in the framework of the Rastall gravity when both the perfect fluid dark matter halo and the baryon disk are taken into account.  相似文献   

20.
We study models that produce a Higgs boson plus photon (\(h^0\gamma \)) resonance at the LHC. When the resonance is a \(Z'\) boson, decays to \(h^0\gamma \) occur at one loop. If the \(Z'\) boson couples at tree level to quarks, then the \(h^0\gamma \) branching fraction is typically of order \(10^{-5}\) or smaller. Nevertheless, there are models that would allow the observation of \(Z'\rightarrow \,h^0\gamma \) at \(\sqrt{s}=13\) TeV with a cross section times branching fraction larger than 1 fb for a \(Z'\) mass in the 200–450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The one-loop decay of the \(Z'\) into lepton pairs competes with \(h^0\gamma \), even if the \(Z'\) couplings to leptons vanish at tree level. We also present a model in which a \(Z'\) boson decays into a Higgs boson and a pair of collimated photons, mimicking an \(h^0\gamma \) resonance. In this model, the \(h^0\gamma \) resonance search would be the discovery mode for a \(Z'\) as heavy as 2 TeV. When the resonance is a scalar, although decay to \(h^0\gamma \) is forbidden by angular momentum conservation, the \(h^0\) plus collimated photons channel is allowed. We comment on prospects of observing an \(h^0\gamma \) resonance through different Higgs decays, on constraints from related searches, and on models where \(h^0\) is replaced by a nonstandard Higgs boson.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号