首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
研究了Ho~(3+)/Yb~(3+)掺杂的氟锗酸盐玻璃在980nm激光二极管抽运下的中红外2.0μm、2.85μm和可见上转换发光特性以及两种稀土离子之间的能量转移机理。在氟锗酸盐玻璃中掺杂1%(物质的量分数)Ho_2O_3和9%Yb_2O_3的样品中,获得了增强的中红外2.0μm和2.85μm发光。测得Ho~(3+)的2.0μm荧光寿命为6.19ms,理论计算得到Ho~(3+)在2023nm处最大发射截面面积为6.6×10-21 cm~2。研究结果表明,Ho~(3+)/Yb~(3+)掺杂的氟锗酸盐玻璃是一种合适的中红外2.0μm和2.85μm激光材料。  相似文献   

2.
采用棒管法制备了低羟基含量的Tm~(3+)/Ho~(3+)共掺氟碲酸盐微结构光纤。当使用波长为1 560 nm的激光器泵浦Tm~(3+)/Ho~(3+)共掺光纤时,处于Tm~(3+)基态3H6的电子被激发至3F4能级,进一步通过Tm~(3+)和Ho~(3+)间的能量传递过程3F4→3H6(Tm~(3+)):5I8→5I7(Ho~(3+))(能量失配为745 cm-1)布居Ho~(3+)的5I7能级,5I7能级上的电子向5I8能级跃迁发射出2.1μm的光。使用1 560 nm光纤激光器作为泵浦源,18 cm长的Tm~(3+)/Ho~(3+)氟碲酸盐微结构光纤作为增益介质,获得了波长为2 063 nm的激光输出。所得激光的斜率效率为12.9%,激光阈值为163 m W,未饱和的最大输出功率为40 m W。研究结果表明,Tm~(3+)/Ho~(3+)共掺氟碲酸盐微结构光纤可用于制作2.1μm光纤激光器。  相似文献   

3.
以52SiO_2-8Na_2CO_3-16Al_2O_3-33NaF-3LuF_3-0.15Yb_2O_3-0.03Ho_2O_3的配比方式,在1 500℃的温度下通过高温熔融法制备了Ho~(3+)/Yb~(3+)共掺杂的氟氧化物玻璃样品和玻璃陶瓷样品。运用Judd-Ofelt理论研究样品的光谱特性。根据吸收谱计算得到的谱线强度参数Ω_λ(λ=2,4,6),从而计算出理论振子强度和实验振子强度,二者的均方根差为δ_(rms)=8.23×10~(-7)。计算了Ho~(3+)的各个能级跃迁的跃迁几率、跃迁分支比及能级寿命参数。结果表明:(1)~5I_7级寿命较长,为0.28 ms,适合作为上转换中间能级;(2)~5I_6→~5I_8能级的跃迁分支比为90.90%,可用于产生1 167 nm的激光。在980 nm红外激光的激发下,Ho~(3+)/Yb~(3+)共掺杂的玻璃陶瓷具有强绿色(550 nm)上转换荧光和较强红色(650 nm)上转换荧光,绿光和红光分别对应~5S_2,~5F_4→~5I_8和~5F_5→~5I_8的能级跃迁。根据上转换发射功率与980 nm LD激光器功率的关系估算出跃迁过程吸收光子数目分别为2.16和2.18,由此确定出该跃迁过程为双光子吸收过程。结果表明,玻璃陶瓷在绿色上转换发光材料中具有潜在的应用价值。  相似文献   

4.
采用高温熔融法制备了单掺Tm~(3+)和Tm~(3+)/Ho~(3+)共掺碲酸盐玻璃,测试了808nm激光泵浦下玻璃的红外和上转换荧光光谱。Tm~(3+)/Ho~(3+)共掺碲酸盐玻璃上转换荧光光谱主要由695nm红光、544nm绿光、474nm蓝光和740nm红光四个发光带组成。通过分析样品的光谱性能和能量转换机制,发现很少报道的740nm红光可能是由Tm~(3+):1 D2→3 F2,3能级跃迁产生的。在掺杂0.5 mol%Tm2O3的样品中添加0.3mol%Ho2O3,695nm红光、740nm红光和474nm蓝光等上转换发光强度明显增大,大约分别是单掺0.5mol%Tm2O3样品中发光强度的3倍,2.5倍和14倍。这些情况说明存在着强烈的Ho~(3+)→Tm~(3+)反向能量传递。单掺Tm~(3+)碲酸盐玻璃中1 D2能级(发射740nm红光)上的粒子集居主要来源于合作上转换(CU)过程,而3 F2,3能级(发射695nm红光)上的粒子集居除了来源于CU过程之外,还有740nm红光的发射和1 G4能级上部分粒子的无辐射跃迁(1 G4→3 F2,3)两条途径,因此样品中695nm红光强度明显要大于740nm红光强度。通过交叉驰豫作用CR2和CR3以及反向共振能量转移RET2,Tm~(3+)/Ho~(3+)共掺碲酸盐玻璃中Tm~(3+)的1 G4能级(发射474nm蓝光)上的粒子集居数比单掺Tm~(3+)时出现了净增加。Tm~(3+)的1 G4能级上粒子集居数的增加可能进一步强化了该能级的无辐射跃迁、740nm红光的发射以及CU过程,并进而促使Tm~(3+)的3 F2,3能级上的粒子集居。所以,当Tm~(3+)/Ho~(3+)共掺碲酸盐玻璃与单掺Tm~(3+)碲酸盐玻璃中掺杂相同浓度的Tm~(3+)时,前者的红光和蓝光等上转换荧光强度均比后者要大。本文还研究了Tm~(3+)之间以及Tm~(3+)与Ho~(3+)之间的交叉弛豫和能量传递等效应,并进一步探讨了Tm~(3+)与Ho~(3+)之间的能量转换机制。  相似文献   

5.
采用坩埚下降法生长出Ho~(3+)离子掺杂浓度~1.90 mol%、Tm~(3+)不同掺杂离子浓度(0.99mol%,1.58mol%,2.37 mol%,3.16 mol%,3.99 mol%,7.19 mol%)的双掺杂立方晶相NaYF_4单晶体.根据测定的吸收光谱以及800nmLD波长激发下的发射光谱、发射截面和衰减曲线,研究从Tm~(3+)离子到Ho~(3+)离子的能量传递机制、Tm~(3+)离子的浓度猝灭效应和Ho~(3+)离子在2.04μm波段的优化发光效应.当Ho~(3+)离子浓度保持为~1.90 mol%不变,Tm~(3+)离子浓度从0.99 mol%增加到1.59mol%时,2.04μm波段的发射强度逐步增强;当浓度从1.59mol%增加到7.19mol%时,发射强度逐步减弱.Ho~(3+)(1.90 mol%)/Tm~(3+)(1.59 mol%)共掺的单晶体的发射截面最大,达到2.17×10-20 cm~2,其荧光寿命最长,为21.72ms;同时,根据Ho~(3+)离子的吸收截面和Tm~(3+)离子的发射截面,计算得到该样品从Tm~(3+)∶3F~(3+)4→Ho∶5I7稀土离子能量传递系数和Ho~(3+)∶~5I_7→Tm~(3+)∶~3F_4反传递系数分别为C_(Tm-Ho)=24.14×10~(-40)cm~6/s,C_(Ho-Tm)=2.05×10~(-40) cm~6/s.  相似文献   

6.
采用水热法成功制备了Yb~(3+),Ho~(3+),Tm~(3+)三掺的多晶KLa(Mo O4)2荧光粉。在980 nm激光激发下,KLa(MoO_4)_2∶Yb~(3+),Ho~(3+),Tm~(3+)发出裸眼可见的明亮白光,这其中包括Tm~(3+)离子发出的蓝光(~475 nm)、Ho~(3+)离子发出的绿光(~540 nm)和红光(~651 nm)。根据色度坐标系计算得出的坐标点可以看出,随着Ho~(3+)/Tm~(3+)掺杂浓度之比的增加,KLa(Mo O_4)_2∶Yb~(3+),Ho~(3+),Tm~(3+)所发出的白光呈现从冷白光到暖白光的变化。最后详细讨论了KLa(Mo O_4)_2∶Yb~(3+),Ho~(3+),Tm~(3+)荧光粉可能的发光机制。  相似文献   

7.
采用改进的化学气相沉积工艺结合溶液掺杂法制备了掺Tm~(3+)石英光纤预制棒,并拉制成纤芯/包层尺寸约为25/400μm的双包层掺Tm~(3+)光纤,通过电子探针显微分析测得其中Tm_2O_3和Al_2O_3的浓度分别为2.6 wt%和1.01 wt%,在793 nm处测得的包层吸收为3 dB/m.基于上述大模场掺Tm~(3+)光纤,搭建了一个高功率全光纤主振荡功率放大结构的掺Tm~(3+)光纤激光器,窄线宽掺Tm~(3+)种子源经过一级放大后,最高输出功率达到530 W,对应的斜率效率为50%,输出激光的中心波长为1980.89 nm.实验中没有观察到明显的放大自发辐射和非线性效应,输出功率仅受限于抽运功率.该结果为目前国内2μm波段全光纤结构激光器实现的最高输出功率,验证了国产掺Tm~(3+)石英光纤在高功率系统中的可靠性.  相似文献   

8.
采用高温固相反应法制备了一系列Li~+掺杂的SrLu_2O_4∶Ho~(3+)/Yb~(3+)荧光粉。Li~+掺杂并没有改变样品原有的斜方晶系结构,Li~+离子能够以替代掺杂和间隙掺杂的方式进入主晶格。适当的Li~+掺杂可以改善样品的团聚现象,颗粒粒径约为3μm。Li~+的引入还可减少高声子能量杂质基团(OH~-,CO_3~(2-)),从而减少荧光猝灭中心,增强发光。在980nm激光照射下,样品发出强烈的绿光和很弱的红光,分别归因于Ho~(3+)的~5F_4,~5S_2→~5I_8和~5F_5→~5I_8跃迁。与SrLu_2O_4∶Ho~(3+)/Yb~(3+)样品相比,Li~+的掺杂使得上转换发光强度明显增强,其原因是Li~+可以修饰Ho~(3+)周围局域晶体场的对称性。与其他碱金属离子掺杂相比,Li~+半径最小、电负性最强,导致发光强度增强最多。抽运依赖分析结果表明,绿光与红光发射均为双光子过程。  相似文献   

9.
The emission properties of 2-μm region fluorescence of Tm~(3+)-Ho~(3+) co-doped tellurite glasses are investigated. Introducing F~- ions to the composition of tellurite glasses plays a positive effect on the 2-μm emission.A maximum intensity of 2-μm emission is achieved when 1.5-mol%Tm_2O_3 and l-mol% Ho_2_O3 concentration are doped in the glasses.The emission cross section and gain coefficient of the ~5I_8→~5I_7 transition of Ho~(3+) are calculated.The emission cross section has a maximum of 1.29×10~(-2...  相似文献   

10.
为获得单一基质的白光发射材料,采用熔融析晶法制备了Tm~(3+)/Tb~(3+)/Eu~(3+)掺杂的硼酸盐玻璃陶瓷。采用XRD、TEM、紫外-可见分光光度计和荧光分光光度计对样品的结构、光谱特性和发光性能进行表征。实验结果表明:玻璃经(500℃+2 h)+(550℃+2 h)热处理后析出单一晶相BaAlBO_3F_2。在363 nm激发下,单掺Tm~(3+)、Tb~(3+)、Eu~(3+)的样品分别发出蓝光、绿光、红光。与玻璃样品相比,玻璃陶瓷样品的发光强度明显增加。通过改变Eu~(3+)离子浓度,玻璃陶瓷样品的色坐标由(0.291 8,0.331 1)变化为(0.388 1,0.338 2)。当Tm~(3+)、Tb~(3+)、Eu~(3+)的浓度分别为0.4%、0.8%和0.2%时,玻璃陶瓷样品的色坐标(0.333 9,0.335 7)和色温(5 427.92 K)与标准白光(0.333 3,0.333 3;5 454.12 K)极为接近。荧光光谱和荧光衰减结果证实,样品中存在Tm~(3+)→Eu~(3+)和Tb~(3+)→Eu~(3+)的能量传递。制备的玻璃陶瓷材料有望用于白光LED及其他光学显示器件。  相似文献   

11.
用高温熔融法制备了Er~(3+)/Tm~(3+)共掺杂无铅铋硅酸盐玻璃.测试了玻璃的吸收光谱和荧光光谱,分析和表征了Er~(3+)、Tm~(3+)离子之间的能量传递机制和传递效率,结果表明:在800 nm和1 550 nm光源泵浦下,Er~(3+)的掺入能够增强Tm~(3+)离子1.8μm发光,相应的最大发射截面分别为6.7×10~(-21)cm~2和7.3×10~(-21)cm~2,荧光带宽达到250 nm.根据Dexter-Foster模型,得到Er~(3+):~4I_(13/2)能级到Tm~(3+):~3F_4能级的直接能量传递系数为16.8×10~(-40)cm~6/s,为1 550 nm泵浦下获得较强的1.8μm发光奠定了基础.  相似文献   

12.
通过高温熔融法和热处理成功制备了白光发光的Eu~(2+)/Eu~(3+)掺杂SiO_2-Al_2O_3-ZnO-K_2CO_3微晶玻璃。测试了微晶玻璃的X射线衍射谱(XRD)、激发光谱和荧光光谱。研究发现,X射线衍射谱表明了玻璃基质中存在β-Zn_2SiO_4纳米晶粒,根据XRD结果和Scherrer公式计算得到β-Zn_2SiO_4晶粒大小约为35 nm。在紫外光激发下,观察到强烈的宽带蓝光(400~460 nm)和红光(574,587,611,650和700nm)发光,分别对应Eu~(2+)的4f~65d→4f~7能级跃迁以及Eu~(3+)的~5D_0→~7F_J(J=0,1,2,3,4)能级跃迁,与未热处理玻璃样品相比较,微晶玻璃的发光强度大大增强。研究结果表明,Eu~(2+)/Eu~(3+)掺杂的SiO_2Al_2O_3-ZnO-K_2CO_3晶玻璃是一种白光LED潜在的基质材料。  相似文献   

13.
采用水热法制备了Mn~(2+)/Fe~(3+)共掺杂的NaYF_4上转换纳米晶,通过改变掺杂浓度来调控晶相、晶粒尺寸以及上转换荧光发射强度。以Fe~(3+)共掺杂的上转换纳米晶为晶核,通过改变反应时间来调控SiO_2壳厚度,观察到上转换荧光发射强度在反应4 h的条件下出现最大值。Mn~(2+)/Fe~(3+)共掺杂的上转换纳米晶样品整体上转换荧光强度分别提高到3.7倍和4.5倍,同时Fe~(3+)共掺样品的红色上转换荧光增强近7倍。基于近红外980 nm激光激发下的稳态光谱研究,提出Yb~(3+)-过渡族离子和Er~(3+)之间的能量传递以及晶场对称性的改变引起了这种增强效应,随着过渡族离子掺杂浓度的增加,过渡族离子之间的交换相互作用导致上转换荧光的猝灭。  相似文献   

14.
采用高温固相法制备了金属离子Bi~(3+)掺杂Lu_(1-x)O_3:x%Ho~(3+)系列荧光粉,研究了不同浓度Bi~(3+)掺杂Lu_(1-x)O_3:x%Ho~(3+)荧光粉的晶体结构、Lu_2O_3基质中Bi~(3+)→Ho~(3+)的能量传递规律及合成粉体的发光性质。X射线衍射结果表明Bi~(3+)、Ho~(3+)掺杂对Lu_2O_3的立方相结构没有影响。在322 nm激发波长下发射出位于551 nm处Ho~(3+)的~5S_2→~5I_8跃迁;在551 nm监测下,合成的Ho~(3+)、Bi~(3+)共掺杂Lu_2O_3荧光粉出现Bi~(3+)的322 nm特征激发峰以及Ho~(3+)的448 nm处的~5I_8→~5F_1跃迁。当Bi~(3+)掺杂浓度为1.5%时,Bi~(3+)对Ho~(3+)的能量传递最有效,比单掺Ho~(3+)样品发射强度提高了34.8倍。Lu_(98.5%-y)O_3:1.5%Ho~(3+),y%Bi~(3+)(y=1,1.5,2)样品,随着Bi~(3+)掺杂浓度增加,用980 nm激发比322 nm激发在551 nm处获得的光强分别提高了13.3倍、16.8倍、14.2倍。通过计算得到Bi~(3+)和Ho~(3+)之间的能量传递临界距离为2.979 nm,且Bi~(3+)与Ho~(3+)之间的能量传递是通过偶极-四极相互作用实现的。  相似文献   

15.
将Yb~(3+)作为协助发光的敏化剂,Tb~(3+)和Tm~(3+)作为发光中心的激活剂分别加入到基质氟化钇钠中,通过水热合成法分别制成不同掺杂浓度的NaYF_4:Yb~(3+)/Tb~(3+)和NaYF_4:Yb~(3+)/Tm~(3+)双掺杂氟化物纳米发光材料,并通过扫描电子显微镜、X射线衍射以及荧光光谱等手段分别对NaYF_4:Yb~(3+)/Tb~(3+)和NaYF_4:Yb~(3+)/Tm~(3+)双掺杂氟化物材料纳米颗粒的形貌及其发光特性进行了研究.实验结果表明:系列样品的X射线衍射图谱衍射峰与标准卡片吻合得很好,实验浓度范围内Yb~(3+)/Tb~(3+)和Yb~(3+)/Tm~(3+)共掺没有改变NaYF_4的晶体结构.实验得到了该材料在980 nm激光激发下的上转换发光光谱并分析了该材料的上转换发光机理,NaYF_4:Yb~(3+)/Tb~(3+)在980 nm激光激发的情况下出现的蓝光,绿光以及红光,分别对应于~5D_4→~7F_6、~5D_4→~7F_5、~5D_4→~7F_1的辐射跃迁;NaYF_4:Yb~(3+)/Tm~(3+)在980 nm光源激发下出现强的480 nm的蓝光,对应的是~1G_4→~3H_6的电子跃迁能级带,在660 nm强的红光发射谱带,对应的是~1G_4→~3F_4能级跃迁辐射光.  相似文献   

16.
采用熔融退火法制备得到Er~(3+)/Yb~(3+)共掺的Te O_2-Zn O-Bi_2O_3玻璃。通过热处理微晶化析出Zn_2Te_3O_8等微晶和引入Ag纳米晶这两种方式,玻璃的发光性能均有所提升。然而,对含Ag纳米晶玻璃进一步热处理后,玻璃的发光性能下降。针对银纳米晶的引入易导致热处理过程中玻璃基体过度析晶的问题,进一步采用电场辅助热处理方法来控制Ag纳米晶与微晶的析出。对含Ag纳米晶玻璃进行电场辅助热处理后,Ag纳米晶析出量增多且微晶没有过度生长,玻璃的发光性能得到进一步提升。  相似文献   

17.
采用熔融淬冷法制备得到透明的Tm~(3+)/Er~(3+)/Yb~(3+)掺杂镓锗钠玻璃。对比研究了808 nm和980 nm激发下Tm_2O_3含量对样品可见-红外光学光谱特性的影响。结合稀土离子能级结构,分析了Tm~(3+)、Er~(3+)和Yb~(3+)离子之间的能量传递机制。结果表明:在808 nm和980 nm的激发下,Tm~(3+)/Er~(3+)/Yb~(3+)掺杂样品中均观察到了473,655,521,544 nm的蓝、红和绿光。在808 nm激发下,随着Tm~(3+)浓度的增加,Tm~(3+):1 800 nm和Er~(3+):1 530 nm发射强度的比率I1.8/I1.53逐渐增大。由于在Tm~(3+)和Er~(3+)间的能量传递有效地改变了红光和绿光的发射强度,473,521,655 nm的发光强度呈现先升高再降低的趋势,在Tm_2O_3掺杂摩尔分数为0.3%时达到最大值。而在980 nm激发下,由于Yb~(3+)对Er~(3+)和Tm~(3+)的能量传递起主要作用,使得其上转换红光(655 nm)、绿光(521 nm和544 nm)和蓝光(473 nm)的发光强度高于808 nm激发下的上转换发光。  相似文献   

18.
采用高温固相反应法制备了一系列Li^+掺杂的SrLu_2O_4∶Ho^(3+)/Yb^(3+)荧光粉。Li^+掺杂并没有改变样品原有的斜方晶系结构,Li^+离子能够以替代掺杂和间隙掺杂的方式进入主晶格。适当的Li^+掺杂可以改善样品的团聚现象,颗粒粒径约为3μm。Li^+的引入还可减少高声子能量杂质基团(OH^-,CO_3^(2-)),从而减少荧光猝灭中心,增强发光。在980nm激光照射下,样品发出强烈的绿光和很弱的红光,分别归因于Ho^(3+)的~5F_4,~5S_2→~5I_8和~5F_5→~5I_8跃迁。与SrLu_2O_4∶Ho^(3+)/Yb^(3+)样品相比,Li^+的掺杂使得上转换发光强度明显增强,其原因是Li^+可以修饰Ho^(3+)周围局域晶体场的对称性。与其他碱金属离子掺杂相比,Li^+半径最小、电负性最强,导致发光强度增强最多。抽运依赖分析结果表明,绿光与红光发射均为双光子过程。  相似文献   

19.
利用高温固相法成功制备了Er~(3+)单掺、Er~(3+)/Yb~(3+)共掺杂Ca_(12)Al_(14)O_(32)F_2上转换发光样品。在980 nm激光激发下,Er~(3+)单掺和Er~(3+)/Yb~(3+)共掺杂样品均呈现出较强的绿光(528,549 nm)和较弱的红光(655 nm)发射,分别归因于Er~(3+)离子的~2H_(11/2),~4S_(3/2)→~4I_(15/2)和~4F_(9/2)→~4I_(15/2)能级跃迁。随着Er离子浓度的增加,单掺杂样品上转换发光强度先增大后减小,最佳掺杂浓度为0.8%。共掺杂Yb~(3+)后,Er~(3+)的发光强度明显增大。还原气氛下合成的样品上转换发光强度增大约两倍,可能和笼中阴离子基团变化有关。发光强度和激发光功率的关系表明所得上转换发射为双光子吸收过程,借助Er~(3+)-Yb~(3+)体系能级结构详细讨论了上转换发射的跃迁机制。  相似文献   

20.
胡博  吴越豪  郑雨璐  戴世勋 《物理学报》2019,68(6):64209-064209
工作在2μm波段附近的中红外微球激光器在生物医学传感、激光雷达、窄带光学滤波和空气污染监控等领域具有重要的应用价值.本文以自制的Tm~(3+)-Ho~(3+)共掺的Ge-Ga-Sb-S (2S2G)硫系玻璃为基质材料,采用玻璃粉末高温漂浮熔融法批量制备了高品质(典型品质因数大于10~5)硫系玻璃微球.优选一颗直径为205.82μm的微球为实验对象,利用光纤锥耦合法对其进行光学近场耦合实验.在808 nm抽运光的作用下,在1.8—2.1μm波段处可观测到明显的荧光回廊模现象.当抽运功率达到0.848 mW的阈值时,可在2080 nm附近观测到明显的激光输出.上述实验结果表明本文采用的2S2G硫系玻璃具有用于制备工作在中远红外波段的有源光学/光电子学器件的潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号