首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
AlGaN基深紫外LED由于具有高调制带宽和小芯片尺寸,在紫外光通信领域受到越来越多的关注.本研究通过改变生长AlGaN量子垒层的Al源流量,生长了三种具有不同量子垒高度的深紫外LED,研究了量子垒高度对深紫外LED光电特性和调制特性的影响.研究发现,随着量子垒高度的增加,深紫外LED的光功率出现先增加后减小的趋势,量...  相似文献   

2.
深紫外飞秒激光兼具深紫外激光单光子能量高和飞秒激光峰值功率高的优势,这使得深紫外飞秒激光在半导体晶圆检测和角分辨光电子能谱等领域被广泛应用,但是色散导致的群速度失配使得深紫外飞秒激光的输出变得十分困难,本文基于掺镱光纤飞秒激光器,实现了一种基于延迟线的深紫外飞秒激光脉冲产生方案.通过优化延迟线精确补偿时间走离,基于掺镱飞秒光纤激光五倍频获得了重复频率为1 MHz、中心波长为206 nm的深紫外飞秒激光输出,其平均功率102 mW,从近红外到深紫外的转换效率为4.25%.  相似文献   

3.
全固态深紫外相干光源在前沿科学、高技术等领域均有重要应用。产生全固态深紫外相干光源的一种有效而可行的技术途径是将商业化的可见、近红外全固态激光作为基频光源,通过非线性光学晶体的多级变频技术产生深紫外激光。本文系统地介绍了深紫外非线性光学晶体及全固态深紫外相干光源的研究进展。主要以KBBF晶体为代表,详细介绍了发现KBBF晶体的过程,晶体生长技术,棱镜耦合器件技术,KBBF晶体的主要光学性质以及产生深紫外相干光源的能力,同时证实了KBBF晶体是目前能使用直接倍频方法实现深紫外激光输出的非线性光学晶体。此外,文中还详细介绍了基于KBBF晶体及棱镜耦合技术的深紫外相干光源的应用情况,尤其是在超高分辨率光电子能谱仪方面的应用及取得的重要成果。最后,展望了深紫外非线性光学晶体及全固态深紫外激光技术的发展方向。  相似文献   

4.
随着高 Ga 组分Ⅲ族氮化物相关研究的日趋深入和生长技术的日益成熟,人们逐渐将研究重心转向具有更宽带隙的高 Al 组分Ⅲ族氮化物.该材料常温下带隙宽至6.2 eV,可覆盖短至210 nm 的深紫外波长范围,具有耐高温、抗辐射、波长易调控等独特优点,因而是制备紫外发光器件的理想材料.目前,高 Al 组分Ⅲ族氮化物材料质量不高,所制备的深紫外 LED 发光器件仍存在内量子效率、载流子注入效率和沿 c 轴方向正面出光效率较低的难题,因而制约了高效紫外发光器件的制备.本文着重介绍了近年来在高 Al 组分Ⅲ族氮化物生长动力学方面的研究进展,总结和梳理了量子结构设计、内电场调控以及晶体场调控等方面的相关研究,以期实现高质量深紫外 LED 的制备.  相似文献   

5.
光子晶体光纤作为光学非线性良好介质,对超连续谱产生具有重要作用。深紫外超连续谱光源在许多应用中有急切的需求,然而由于实验条件和光纤参数等方面的影响,利用高非线性光子晶体光纤产生深紫外(<280 nm)超连续谱的报道较少。通过理论和实验研究了高非线性光子晶体光纤在深紫外区的频率变换,并分析其产生的物理机理。使用钛宝石飞秒激光器将实验室自制的光子晶体光纤在反常色散区泵浦,研究了不同泵浦功率和泵浦波长对深紫外区超连续谱的影响,结果表明:泵浦波长固定为860 nm时,深紫外频率光谱展宽范围随泵浦功率的增加而逐渐展宽;泵浦功率固定为0.4 W时,泵浦波长的增加不仅展宽超连续谱范围而且极大的提高了深紫外区光谱的转换效率。当泵浦波长为870 nm,泵浦功率为0.4 W,实验所用光子晶体光纤长度为1.45 m,零色散波长为825 nm时,光子与色散波的交叉相位调制使深紫外基模超连续谱扩展到最短波长212 nm。  相似文献   

6.
文章以KBe2BO3F2(KBBF)晶体为代表,系统地介绍了中国深紫外非线性光学晶体的发展。首先简单回顾了KBBF晶体的发现历程,然后介绍了KBBF晶体生长、棱镜耦合器件技术的发展,以及晶体产生深紫外相干光的能力;最后简单介绍了基于KBBF晶体的深紫外相干光源在超高分辨率光电子能谱仪等先进科学仪器方面的应用及研究成果,并展望了未来可能的应用领域。  相似文献   

7.
<正>这是一个由中国科学院承担的我国自主研发的前沿科学项目,该项目总投入近4亿元。目前已成功研制出深紫外激光拉曼光谱仪、深紫外激光发射电子显微镜等8台深紫外固态激光源前沿装备,是当今世界所独有的科研设备,居国际领先地位。这意味着我国成为不仅能取得精密的深紫外光,而且还能  相似文献   

8.
为了研究AlGaN量子阱层和垒层中Al组分不同对AlGaN基深紫外发光二极管(LED)光电性能的影响,本文利用MOCVD生长、光刻和干法刻蚀工艺制备了AlGaN量子阱层和垒层具有不同Al组分的270/290/330nm深紫外LED,通过实验和数值模拟计算方法发现,量子阱层和垒层中具有低Al组分紫外LED的AlGaN材料具有较低的位错密度、较高的光输出功率和外量子效率。通过电流-电压(I-V)曲线拟合出的较大的理想因子(3.5)和能带结构图表明,AlGaN深紫外LED的电流产生是隧穿机制占据主导作用,这是因为高Al组分AlGaN量子阱中强极化场造成了有源层区域较大的能带弯曲和电势降。  相似文献   

9.
郭道友  李培刚  陈政委  吴真平  唐为华 《物理学报》2019,68(7):78501-078501
β-Ga_2O_3是一种新型的超宽禁带氧化物半导体,禁带宽度约为4.9 eV,对应日盲区,对波长大于253 nm的深紫外一可见光具有高的透过率,是天然的日盲紫外探测及深紫外透明电极材料.本文介绍了Ga_20_3材料的晶体结构、基本物性与器件应用,并综述了β-Ga_2O_3在深紫外透明导电电极和日盲紫外探测器中的最新研究进展.Sn掺杂的Ga_2O_3薄膜电导率可达到32.3 S/cm,透过率大于88%,但离商业化的透明导电电极还存在较大差距.在日盲紫外探测器应用方面,基于异质结结构的器件展现出更高的光响应度和更快的响应速度,ZnO/Ga_2O_3核/壳微米线的探测器综合性能最佳,在-6 V偏压下其对254 nm深紫外光的光响应度达1.3×10~3A/W,响应时间为20μs.  相似文献   

10.
盖敏强  王颖  潘世烈 《物理学报》2019,68(2):24208-024208
利用非线性光学(NLO)晶体材料和变频技术,可以把波长范围有限的激光光源扩展到紫外、深紫外区,这已成为深紫外光源的热点研究方向.然而,目前限制深紫外全固态激光器发展和应用的关键问题是缺乏能够在该波段进行频率转换并且产业化应用的NLO晶体材料.因此,该领域的各国科学家都在积极探索并发展新一代的深紫外NLO晶体材料.目前仅有KBe_2BO_3F_2 (KBBF)晶体能够实现Nd:YAG的直接六倍频深紫外激光(波长为177.3 nm)输出.然而, KBBF晶体存在严重的层状生长习性,并且其原料氧化铍有剧毒,从而极大地制约了其商业化生产和应用进程.根据阴离子基团理论,以BO_3基团为基本结构单元形成的类[Be_2BO_3F]层状结构特征仍然是目前最有利于产生深紫外谐波的适宜结构之一,因此,基于KBBF层状结构进行分子工程设计,并开发类KBBF结构的硼酸盐可能是探索新材料的优选策略.本文通过回顾类KBBF结构硼酸盐深紫外NLO晶体的发展历程,系统梳理该类晶体材料层状结构特点、不同层间连接方式和光学性能,分析限制深紫外NLO晶体发展的主要因素,讨论目前发展类KBBF结构硼酸盐深紫外NLO晶体材料的主要矛盾和解决策略,以期对未来新材料的创新探索提供借鉴.  相似文献   

11.
全固态紫外激光器研究   总被引:7,自引:2,他引:5  
本文报道了具有增强谐振倍频腔的全固态紫外激光器研究半导体激光二极管(LD)泵浦的Nd:YVO4激光晶体产生波长为1064nm的近红外光,腔内倍频输出波长为532nm的绿光,再送入增强谐振腔进行四倍频,输出波长为266nm的深紫外激光产生深紫外激光的基频绿光输入阈值可低到2.5mW据我们所知,这是国内首次报道的全固态紫外激光器.  相似文献   

12.
深紫外LED可通过物理方式破坏病毒和细菌的结构,从而获得高效消毒的效果。相比于工艺成熟的蓝光LED,如何提高深紫外LED的封装可靠性和出光率仍是关键问题。本文采用基底预热方式微固化封装胶,结合阵列点胶方式将石英玻璃固定在镀铜围坝,制备了半无机封装的深紫外LED。该器件的输出波长为275 nm,半峰宽约为11 nm。对比传统类透明材料封装的器件,石英封装的深紫外LED有更高的出光率。在真空红墨水和氦气漏率实验中,采用本文提出的半无机封装技术的深紫外LED器件表现出高密封性。此外,在加速老化测试中,该封装器件的光衰速率在20%以内。实验结果表明,对比有机封装的深紫外LED器件,在基底预热条件下,采用阵列点胶固定石英玻璃是现阶段提高深紫外LED可靠性的一种封装方法。  相似文献   

13.
本文设计了V形和W形的空穴阻挡层(HBL)结构,改善空穴在AlGaN基深紫外激光二极管(DUV-LD)n型区的泄露问题.使用Crosslight软件,将参考型矩形、V形和W形三种空穴阻挡层结构进行仿真研究,分别比较了三种不同结构的DUV-LD能带、n区空穴浓度、辐射复合率、电光转换效率、有源区载流子浓度等特性,结果表明,具有W形空穴阻挡层的DUV-LD拥有更高的空穴有效势垒高度、更高的辐射复合率、更低的空穴泄露以及更好的斜率效率,可以有效降低深紫外激光二极管在n型区的空穴泄露,提升其光学和电学性能.  相似文献   

14.
陈其铣  陈创天 《物理》1997,26(2):67-73
阐述了紫外无机非线性光学晶体分子工程学探索方法的基本特点,具体分析深紫外无机非线性光学晶体硼铍酸锶(SBBO)以氟硼铍酸钾(KBBF)为主要参考晶体的分子设计方法,随后根据晶体结构研究、单晶培养、和非线性光学性能测定等实验结果讨论SBBO作为新型深紫外无机晶体的主要优点,即它既具有更短的紫外吸收边(接近155nm)和较大的非线性光学系数(d22(SBBO)=06×d22(BBO)=138pm/V),同时晶体无明显层状习性,并肯有良好的化学稳定性和机械性能  相似文献   

15.
范灏然  陈曦  郑磊  谢文侠  季鑫  郑权 《中国光学》2023,(6):1318-1323
为了提高半导体检测用深紫外激光器的检测效率,需要搭建高功率、高重频257 nm深紫外皮秒激光器实验平台。本文以光子晶体光纤放大器和腔外四倍频结构为基础,进行了257 nm深紫外激光器的实验研究。种子源采用中心波长为1 030 nm、脉冲宽度为50 ps的光纤激光器,输出功率为20 mW,重复频率为19.8 MHz。通过两级掺镱双包层(65μm/275μm)光子晶体光纤棒放大结构,获得了1 030 nm高功率基频光。利用二倍频晶体LBO、四倍频晶体BBO,采用腔外倍频方式获得了257 nm深紫外激光。种子源通过两级光子晶体光纤放大器输出的1 030 nm基频光,输出功率为86 W,经过激光聚焦系统后,倍频得到二次谐波515 nm激光输出功率为47.5 W,四次谐波257 nm深紫外激光输出功率为5.2 W,四次谐波转换效率为6.05%。实验结果表明,该结构可获得高功率257 nm深紫外激光输出,为提高半导体检测用激光器的检测效率提供了新思路。  相似文献   

16.
在深紫外激光二极管中,波导层的作用是用来传输并限制光束.传统的深紫外激光二极管存在很强的极化感应电场,这种电场能够降低深紫外激光二极管的光电性能.本文提出了一种新型双阶梯型上波导层(UWG)和下波导层(LWG),可以提高半导体激光器的性能.通过使用Crosslight软件将矩形、单阶梯型和双阶梯型波导层三种不同的结构进行仿真研究,比较三种结构器件的能带图、电子空穴浓度、辐射复合率、P-I以及V-I特性等.结果表明,新型双阶梯波导层结构的应用增加了电子有效势垒的高度,缓解了电子阻挡层的能带弯曲,减小了极化电场的影响,从而提升了该器件的光学和电学性能.  相似文献   

17.
研究了中心对称晶体中的三阶非线性频率转换,并在这类晶体中实现了紫外激光的有效输出.确定了负单轴晶体的相位匹配角公式及相应的相位匹配角.选择带有离域共轭π键的冰洲石晶体和α-BBO晶体进行实验.以飞秒激光作为基频光,在Ⅱ类相位匹配方式下,利用α-BBO晶体获得了最高单脉冲能量为37.6μJ的266nm紫外三次谐波,最高转换效率为2.5%;利用冰洲石晶体获得了最高单脉冲能量为19.3μJ的266nm紫外三次谐波,最高转换效率为1.25%.该研究验证了利用中心对称晶体的三阶非线性效应直接获得紫外激光的可行性和获得深紫外激光的可能性,为紫外非线性晶体的探索和深紫外激光的研究提供参考.  相似文献   

18.
深紫外(DUV)光刻机照明系统普遍采用衍射光学元件(DOE)实现光瞳整形。根据光刻机的指标要求,衍射光学元件应具有高衍射效率和高均匀性的特点。传统的相位恢复算法如Gerchberg-Saxton(GS)及其改进算法,一般只能通过降低均匀性来提高衍射效率,无法得到最优的解。而全局优化算法如模拟退火法、遗传基因法等需要大量的计算时间,难以实现像素数目多的深紫外DOE的设计。为了克服上述困难,提出了一种基于GS的混合梯度下降算法,在迭代过程中对每次迭代的振幅进行加权反馈修正,在加快收敛速度的同时,减少误差,同时实现高效率和高信噪比。利用该算法对光刻需要的传统、四极照明光瞳、定制照明光瞳的DOE进行了设计,结果表明,实现传统和四极照明光瞳的16阶量化相位DOE的衍射效率均超过92%,而非均匀性分别为3.98%和2.3%。实现定制照明光瞳的DOE的衍射效率为91%,图形恢复误差为5.8%。该方法为获得高性能深紫外DOE提供一条可行的途径。  相似文献   

19.
紫外LED的发光功率和效率还远不能令人们满意,波长短于300 nm的深紫外LED的发光效率普遍较低。厘清高Al组分Al Ga N多量子阱结构的发光机制将有利于探索改善深紫外LED的发光效率的新途径、新方法。为此,本文通过金属有机气相外延技术外延生长了表面平整、界面清晰可辨且陡峭的高Al组分AlGa N多量子阱结构材料,并对其进行变温光致发光谱测试,结合数值计算,深入探讨了Al Ga N量子阱的发光机制。研究表明,量子阱中具有很强的局域化效应,其发光和局域激子的跳跃息息相关,而发光的猝灭则与局域激子的解局域以及位错引起的非辐射复合有关。  相似文献   

20.
通过非线性光学频率转换技术产生不同频率的脉冲辐射是实现具有短波波长的激光光源的有效手段.近年来,光子晶体光纤技术的发展为解决传统的基于非线性晶体的频率转换系统面临的难以维护、转换效率低、不易推广等问题带来了新的解决思路.在频率转换研究领域中,紫外光波段的脉冲辐射产生一直以来都受到学者的广泛关注.国外已报道过利用超短脉冲抽运光子晶体光纤实现三次谐波产生,从而输出具有高灵敏度和高分辨率的窄带紫外脉冲辐射,但其紫外光转换效率较低,且光谱的可调谐能力有限,而这些缺陷恰恰可以由宽带紫外脉冲辐射的获得来改善.宽带紫外脉冲辐射的有效获得不仅意味着紫外光转换效率可大幅提高,并且若加以合适的滤波手段,还可获得内任意波长下的窄带宽的脉冲辐射,从而增加窄带紫外脉冲辐射的可调谐度,但目前相关报道较为有限.本文将中心波长为1035 nm,脉冲重复频率为50 MHz的飞秒激光耦合至一定长度的高非线性光子晶体光纤中,将其产生的拉曼自频移孤子作为三次谐波产生的抽运源,通过相位匹配作用,在深紫外波段产生高阶模式传导下的三次谐波.随后让超短脉冲以偏离光纤轴心一定角度入射,可进一步激发出具有更短波长的超高阶紫外光模式.通过激发多个邻近的超高阶紫外光模式,在一定连续范围内实现相位匹配,获得超高阶紫外光模式传输下紫外光转换效率为3.6%的宽带(32—360 nm)深紫外脉冲激光.实验结果与理论模拟结果相一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号