首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Bloom-Gilman quark-hadron duality of nucleon spin-structure functions g 1,2 is discussed. The occurrence of the duality is also estimated. Moreover, target mass corrections to the nucleon spin-structure functions as well as to the quark-hadron duality are studied. Correspondence: Y. B. Dong, Institute of High-Energy Physics, Chinese Academy of Sciences, Beijing 100049, China  相似文献   

2.
3.
Spin-dependent parton distributions are described in a broken SU(6) quark parton model. The model predicts definite forms for the spin-dependent structure functions in deep inelastic lepton-nucleon scattering and leads to several relations between Regge intercepts and couplings. Resonance electroproduction at large momentum transfer is explored via Bloom-Gilman duality.  相似文献   

4.
By employing the parametrization form of the nucleon spin structure function in the resonance region, which includes the contributions of the resonance peaks and of nonresonance background, we study Bloom-Gilman quark-hadron duality of g1 both in the inelastic resonance region and elastic one.  相似文献   

5.
Bloom-Gilman quark-hadron duality of nuclear spin structure function is studied by comparing the integral of g1 from perturbative QCD prediction in the scaling region to the moment of g1 in the resonance region. The spin structure function in the resonance region is estimated by the parametrization forms of non-resonance background and of resonance contributions. The uncertainties of our calculations due to those parametrization forms are discussed. Moreover, the effect of the (1232)-resonance in the first resonance region and the role of the resonances in the second resonance region are explicitly shown. Elastic peak contribution to the duality is also analyzed.  相似文献   

6.
Using the Bjorken-Kogut type of inclusive-exclusive relation, we derive inclusive-inclusive relations among different inclusive processes.We discuss some of the difficulties related to the inclusive-exclusive relation, and their implications on the inclusive-inclusive relations. For example, both duality diagrams and the behaviour of inclusive processes in the deep-inelastic e-p scattering, indicate that the Bjorken-Kogut relation holds only for diffractive processes.The inclusive-inclusive relations provide us with information on the dependence of the scaling functions on the external masses. However, this information depends on the choice of the scaling variable.Applying the same ideas to the Bloom-Gilman relation, we derive relations among the structure functions of deep-inelastic electron scattering on different hadrons.  相似文献   

7.
Happy New Year     
The collective phenomena of quantum interference, including wave particle duality and apparent non-locality, have intrigued the physics community for many years. It is only recently that we have begun to turn these somewhat counter intuitive quantum phenomena to good use. A leading force in that direction is quantum cryptography - absolute secure key exchange encoding data on the polarisation or phase of individual photons, or using the quantum correlations between pairs of particles. Technologies are now implemented to bring the various forms of quantum cryptography to commercial application. At the same time the possibility of communications applications has stimulated the study of a variety of novel quantum interference phenomena. Quantum information experiments involving two, three and four photons are planned and a novel Field of continuous variable (many photon) quantum information has emerged. These various aspects of quantum cryptography are considered in the conference “QUICK: Quan- tum interference and cryptographic keys: novel physics and advancing technologies", taking place in Cargese from April 7 to 13, 2001. Following that conference, we invite submission of original papers to a special issue of the European Physical Journal D, on the following topics: - quantum cryptography technologies, - quantum cryptography systems, - free space quantum cryptography and satellites, - pair-photon sources and multiphoton interference, - single photon sources, - continuous variable quantum information, - security aspects, - cryptographic protocols, - entanglement purification in cryptographic schemes, - novel physics and quantum gates for photonic qubits.  相似文献   

8.
We intend to uncover generative principles for complex, biological systems, looking the reflections as well as the analogs of decision making property in quantum physics: measurement, self-interaction of the electron, Berry phase and quantum anomalies. We assume that classical analogs of the mentioned phenomena could be related to the evolvability, growing of complexity and decision making in biological systems. The reflection is a map (coarse graining) from microscopic motions to a macroscopic scale that relates with a free-energy cost and is often accompanied by the emergence of order-parameters. In this context we identify the self-reflection phenomenon, which is exemplified by cognition, information transfer near the error threshold, and tightly related evolution-ecology phenomena. We propose that complex systems that have similar reflection structure are to be described by similar mathematical tools including stochastic (information) thermodynamics and the large deviation theory. We introduce the concept of complexity engine: the group of two (or more) autonomous features of complex systems that are in a partial conflict with each other. Analogues of this are wave-particle duality in quantum mechanics and data-program duality in digital life. We formulate a fundamental problem: does the three-dimensional space provide a complexity engine for the emergence of life?  相似文献   

9.
10.
Kenneth Wilson had an enormous impact on the renormalization group and field theories in general. I had the great pleasure to work in three fields to which he contributed essentially: Critical phenomena, gauge-invariance in duality and confinement, and flow equations and similarity renormalization.  相似文献   

11.
Call for papers     
The collective phenomena of quantum interference, including wave particle duality and apparent non-locality, have intrigued the physics community for many years. It is only recently that we have begun to turn these somewhat counter intuitive quantum phenomena to good use. A leading force in that direction is quantum cryptography - absolute secure key exchange encoding data on the polarisation or phase of individual photons, or using the quantum correlations between pairs of particles. Technologies are now implemented to bring the various forms of quantum cryptography to commercial application. At the same time the possibility of communications applications has stimulated the study of a variety of novel quantum interference phenomena. Quantum information experiments involving two, three and four photons are planned and a novel Field of continuous variable (many photon) quantum information has emerged. These various aspects of quantum cryptography are considered in the conference “QUICK: Quan- tum interference and cryptographic keys: novel physics and advancing technologies", taking place in Cargese from April 7 to 13, 2001. Following that conference, we invite submission of original papers to a special issue of the European Physical Journal D, on the following topics: - quantum cryptography technologies, - quantum cryptography systems, - free space quantum cryptography and satellites, - pair-photon sources and multiphoton interference, - single photon sources, - continuous variable quantum information, - security aspects, - cryptographic protocols, - entanglement purification in cryptographic schemes, - novel physics and quantum gates for photonic qubits. The submitted articles should be sent to the EPJ D Editorial Office in Orsay. The deadline is July 15, 2001. We look forward to a stimulating special issue.  相似文献   

12.
The collective phenomena of quantum interference, including wave particle duality and apparent non-locality, have intrigued the physics community for many years. It is only recently that we have begun to turn these somewhat counter intuitive quantum phenomena to good use. A leading force in that direction is quantum cryptography - absolute secure key exchange encoding data on the polarisation or phase of individual photons, or using the quantum correlations between pairs of particles. Technologies are now implemented to bring the various forms of quantum cryptography to commercial application. At the same time the possibility of communications applications has stimulated the study of a variety of novel quantum interference phenomena. Quantum information experiments involving two, three and four photons are planned and a novel Field of continuous variable (many photon) quantum information has emerged. These various aspects of quantum cryptography are considered in the conference “QUICK: Quan- tum interference and cryptographic keys: novel physics and advancing technologies", taking place in Cargese from April 7 to 13, 2001. Following that conference, we invite submission of original papers to a special issue of the European Physical Journal D, on the following topics: - quantum cryptography technologies, - quantum cryptography systems, - free space quantum cryptography and satellites, - pair-photon sources and multiphoton interference, - single photon sources, - continuous variable quantum information, - security aspects, - cryptographic protocols, - entanglement purification in cryptographic schemes, - novel physics and quantum gates for photonic qubits. The submitted articles should be sent to the EPJ D Editorial Office in Orsay. The deadline is July 15, 2001. We look forward to a stimulating special issue.  相似文献   

13.
    
The collective phenomena of quantum interference, including wave particle duality and apparent non-locality, have intrigued the physics community for many years. It is only recently that we have begun to turn these somewhat counter intuitive quantum phenomena to good use. A leading force in that direction is quantum cryptography - absolute secure key exchange encoding data on the polarisation or phase of individual photons, or using the quantum correlations between pairs of particles. Technologies are now implemented to bring the various forms of quantum cryptography to commercial application. At the same time the possibility of communications applications has stimulated the study of a variety of novel quantum interference phenomena. Quantum information experiments involving two, three and four photons are planned and a novel Field of continuous variable (many photon) quantum information has emerged. These various aspects of quantum cryptography are considered in the conference “QUICK: Quan- tum interference and cryptographic keys: novel physics and advancing technologies", taking place in Cargese from April 7 to 13, 2001. Following that conference, we invite submission of original papers to a special issue of the European Physical Journal D, on the following topics: - quantum cryptography technologies, - quantum cryptography systems, - free space quantum cryptography and satellites, - pair-photon sources and multiphoton interference, - single photon sources, - continuous variable quantum information, - security aspects, - cryptographic protocols, - entanglement purification in cryptographic schemes, - novel physics and quantum gates for photonic qubits. The submitted articles should be sent to the EPJ D Editorial Office in Orsay. The deadline is July 15, 2001. We look forward to a stimulating special issue.  相似文献   

14.
The collective phenomena of quantum interference, including wave particle duality and apparent non-locality, have intrigued the physics community for many years. It is only recently that we have begun to turn these somewhat counter intuitive quantum phenomena to good use. A leading force in that direction is quantum cryptography - absolute secure key exchange encoding data on the polarisation or phase of individual photons, or using the quantum correlations between pairs of particles. Technologies are now implemented to bring the various forms of quantum cryptography to commercial application. At the same time the possibility of communications applications has stimulated the study of a variety of novel quantum interference phenomena. Quantum information experiments involving two, three and four photons are planned and a novel Field of continuous variable (many photon) quantum information has emerged. These various aspects of quantum cryptography are considered in the conference “QUICK: Quan- tum interference and cryptographic keys: novel physics and advancing technologies", taking place in Cargese from April 7 to 13, 2001. Following that conference, we invite submission of original papers to a special issue of the European Physical Journal D, on the following topics: - quantum cryptography technologies, - quantum cryptography systems, - free space quantum cryptography and satellites, - pair-photon sources and multiphoton interference, - single photon sources, - continuous variable quantum information, - security aspects, - cryptographic protocols, - entanglement purification in cryptographic schemes, - novel physics and quantum gates for photonic qubits. The submitted articles should be sent to the EPJ D Editorial Office in Orsay. The deadline is July 15, 2001. We look forward to a stimulating special issue.  相似文献   

15.
    
The collective phenomena of quantum interference, including wave particle duality and apparent non-locality, have intrigued the physics community for many years. It is only recently that we have begun to turn these somewhat counter intuitive quantum phenomena to good use. A leading force in that direction is quantum cryptography - absolute secure key exchange encoding data on the polarisation or phase of individual photons, or using the quantum correlations between pairs of particles. Technologies are now implemented to bring the various forms of quantum cryptography to commercial application. At the same time the possibility of communications applications has stimulated the study of a variety of novel quantum interference phenomena. Quantum information experiments involving two, three and four photons are planned and a novel Field of continuous variable (many photon) quantum information has emerged. These various aspects of quantum cryptography are considered in the conference “QUICK: Quan- tum interference and cryptographic keys: novel physics and advancing technologies", taking place in Cargese from April 7 to 13, 2001. Following that conference, we invite submission of original papers to a special issue of the European Physical Journal D, on the following topics: - quantum cryptography technologies, - quantum cryptography systems, - free space quantum cryptography and satellites, - pair-photon sources and multiphoton interference, - single photon sources, - continuous variable quantum information, - security aspects, - cryptographic protocols, - entanglement purification in cryptographic schemes, - novel physics and quantum gates for photonic qubits. The submitted articles should be sent to the EPJ D Editorial Office in Orsay. The deadline is July 15, 2001. We look forward to a stimulating special issue.  相似文献   

16.
Taksu Cheon 《Pramana》2002,59(2):311-319
The existence of several exotic phenomena, such as duality and spectral anholonomy is pointed out in one-dimensional quantum wire with a single defect. The topological structure in the spectral space which is behind these phenomena is identified.  相似文献   

17.
We investigate the duality structure of quantum lattice systems with topological order, a collective order also appearing in fractional quantum Hall systems. We define electromagnetic (EM) duality for all of Kitaev?s quantum double models based on discrete gauge theories with Abelian and non-Abelian groups, and identify its natural habitat as a new class of topological models based on Hopf algebras. We interpret these as extended string-net models, whereupon Levin and Wen?s string-nets, which describe all intrinsic topological orders on the lattice with parity and time-reversal invariance, arise as magnetic and electric projections of the extended models. We conjecture that all string-net models can be extended in an analogous way, using more general algebraic and tensor-categorical structures, such that EM duality continues to hold. We also identify this EM duality with an invertible domain wall. Physical applications include topology measurements in the form of pairs of dual tensor networks.  相似文献   

18.
A geometric interpretation of the duality between two real forms of the complex trigonometric Ruijsenaars-Schneider system is presented. The phase spaces of the systems in duality are viewed as two different models of the same reduced phase space arising from a suitable symplectic reduction of the standard Heisenberg double of U(n). The collections of commuting Hamiltonians of the systems in duality are shown to descend from two families of ‘free’ Hamiltonians on the double which are dual to each other in a Poisson-Lie sense. Our results give rise to a major simplification of Ruijsenaars’ proof of the crucial symplectomorphism property of the duality map.  相似文献   

19.
We present some results on duality maps and ground states of 1 dimensional quantum spin models. We also give some applications to Kramers Wannier duality and the nonlocal transformation that Kennedy and Tasaki discovered in their study of Haldane phase of quantum antiferromagnetic spin models.  相似文献   

20.
We discuss the nucleon spin structure function gl and the difference between the proton and neutrontargets gp1 - gn1 , based on quark model calculation. Quark-hadron duality for the nucleon spin structure function is alsoanalyzed. Effects of the △(1232) and Roper P11(1440) resonances on the spin structure function and on the differencegn1 - gn1 are mentioned. The results of different models for the Roper resonance are also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号