首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Boyd's iterative force-field computer program, with modified parameters, has been used to calculate strain energies in the following molecules: trans-cyclooctene, cyclohexene, melhylenecyclohexane, 1,3,5- and 1,3,6-cyclooctatriene, and cyclononyne. Both static and dynamic aspects of the conformational properties of these molecules have been investigated in detail, and the results are discussed in conjunction with extant experimental data and previous force-field calculations.  相似文献   

2.
6-(Ethylthio)-, 6-(ethylseleno)-, and 6-(ethyltelluro)-2,2,4-trimethyl-1,2-dihydroquinoline-three heavier chalcogen analogues of ethoxyquin-were prepared by dilithiation of the corresponding 6-bromodihydroquinoline followed either by treatment with the corresponding diethyl dichalcogenide (sulfur derivative) or by insertion of selenium/tellurium into the carbon-lithium bond, oxidation to a diaryl dichalcogenide, borohydride reduction, and finally alkylation of the resulting areneselenolate/arenetellurolate. Ethoxyquin, its heavier chalcogen analogues, and the corresponding 6-PhS, 6-PhSe, and 6-PhTe derivatives were assayed for both their chain-breaking antioxidative capacity and their ability to catalyze reduction of hydrogen peroxide in the presence of a stoichiometric amount of a thiol reducing agent (thiol peroxidase activity). Ethoxyquin itself turned out to be the best inhibitor of azo-initiated peroxidation of linoleic acid in a water/chlorobenzene two-phase system. In the absence of N-acetylcysteine as a coantioxidant in the aqueous phase, it inhibited peroxidation as efficiently as alpha-tocopherol but with a more than 2-fold longer inhibition time. In the presence of 0.25 mM coantioxidant in the aqueous phase, the inhibition time was further increased by almost a factor of 2. This is probably due to thiol-mediated regeneration of the active antioxidant across the lipid-aqueous interphase. The ethyltelluro analogue 1d of ethoxyquin was a similarly efficient quencher of peroxyl radicals compared to the parent in the two-phase system, but less regenerable. Ethoxyquin was found to inhibit azo-initiated oxidation of styrene in the homogeneous phase (chlorobenzene) almost as efficiently (kinh = (2.0 +/- 0.2) x 106 M-1 s-1) as alpha-tocopherol with a stoichiometric factor n = 2.2 +/- 0.1. At the end of the inhibition period, autoxidation was additionally retarded, probably by ethoxyquin nitroxide formed during the course of peroxidation. The N-H bond dissociation enthalpy of ethoxyquin (81.3 +/- 0.3 kcal/mol) was determined by a radical equilibration method using 2,6-dimethoxyphenol and 2,6-di-tert-butyl-4-methylphenol as equilibration partners. Among the investigated compounds, only the tellurium analogues 1d and, less efficiently, 1g had a capacity to catalyze reduction of hydrogen peroxide in the presence of thiophenol. Therefore, analogue 1d is the only antioxidant which is multifunctional (chain-breaking and preventive) in character and which can act in a truly catalytic fashion to decompose both peroxyl radicals and organic hydroperoxides in the presence of suitable thiol reducing agents.  相似文献   

3.
In comparison with other chalcogenide glassy systems, less attention has been paid to the quasi-ternary (quaternary) system As2(S, Se, Te)3. In this paper, thermal methods were used to characterize ten different quaternary homogenous semiconductor glasses that were prepared by mixing the stoichiometric binary systems As2S3, As2Se3 and As2Te3. The ratios of the constituent binaries in the quasi-ternary glasses exerted a great influence on their thermal spectrum. The samples poor in As2Te3 showed neither the exothermic nor the endothermic peak due to crystallízation (T c) and melting (T m), respectively, but only the glass transition (T g). Three transition temperatures,T g, Tc andT m, were detected for other compositions. On the other hand, a phase separation was observed in the samples rich in As2Te3. A cyclic scanning technique was used to investigate the thermally-induced phases during two consecutive heat ing-cooling cycles covering the temperature rangeT g?Tm. The energy of decompositionE d decreased on increase of the ratio As2S3/As2Se3 (at constant As2Te3), whereas it increased on increase of the ratio As2Te3/As2Se3 (at constant As2Se3 or As2S3).  相似文献   

4.
The application of intramolecular coordination in the isolation of novel diaryl diselenides and their derivatives, monomeric chalcogenolato complexes of group 12 metals, glutathione peroxidase mimics, hybrid bi-, tri- and multidentate ligands and selenium-containing azamacrocycles is described.  相似文献   

5.
The Crystal Structure of Cs2S and a Remark about Cs2Se, Cs2Te, Rb2Se, and Rb2Te Cs2S crystallizes orthorhombic, a = 8.571, b = 5.383, c = 10.39 Å, Z = 4, d = 4.13, dpyk = 4.19 g · cm?3, D–Pnma with \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {{\rm Cs}}\limits^|,\mathop {{\rm Cs}}\limits^\parallel $\end{document} and S in 4(c) each, for parameter see text. It is R = 10,4% for 202 of 222 possible reflexes. There is a sequence of S2? corresponding to the hexagonal closest packing of sphares. Cs occupies half of “tetrahedron” and all “octahedron vacancies”; the deviation of \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {{\rm Cs}}\limits^|, $\end{document} in ?oktahedron vacancies”? is noticeable. Effective Coordination Numbers, ECoN, and the Madelung Part of Lattice Energy, MAPLE, are calculated and discussed.  相似文献   

6.
7.
The electronic structure of the molecules of chalcogen dichlorides ECl2 (E = S, Se, Te) was investigated by X-ray spectroscopy and quantum-chemical calculations in the X(SW) approximation. The sequence of the energy levels in the ECl2 molecules was determined. The nature of the bonding in the various orbitals of the molecules in the SCl2SeCl2TeCl2 series was established. The reasons for the reduced chemical stability of the SeCl2 molecule and the nonexistence of the TeCl2 molecule in the individual state are indicated.  相似文献   

8.

Retrospect of organoselenium and tellurium chemistry for these 30 years is described focusing on our novel findings in this field: (1) telluroxide elimination leading to alkenes and allylic compounds, (2) Pd-catalyzed or –mediated carbodetelluration for a new C–C bond formation, (3) synthesis of chiral diferrocenyl dichalcogenides and their use as chiral auxiliaries, (4) asymmetric selenoxide elimination for making optically active allenes and alkenes, (5) meta chloroperbenzoic acid (MCPBA) oxidation of organic selenides and tellurides leading to a substitution of a PhSe or PhTe moiety, as well as (6) preparation of chalcogen-bridged diruthenium complexes and their catalytic use for propargylic substitution reactions.  相似文献   

9.
"Se/Te alloy and Te nanowires (NWs) with different morphologies were synthesized through a novel, control-lable solution-phase method. Sodium dodecylbenzene sulfonate was employed as a surfactant to control the reaction rate in the synthesis. Through reaction process dynamics control, both "bending" and "V-shaped" Se/Te alloy NWs were controllably produced. The phase structures and morphologies of the Se/Te and Te products were investigated with XRD, TEM, and HRTEM. The formation mechanisms of the NWs were investigated on the basis of the experimental results. The significance of these results lies in the important implications concerning the potential use of these NWs materials for nanoscale electronic devices."  相似文献   

10.
Crystal-chemical analysis of 312 compounds containing complexes [Ru a X b ] z (X = O, S, Se, Te) is performed using Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres. In most of these complexes, Ru atoms have coordination number (CN) 6 and form RuX6 octahedra. However, only with respect to oxygen do the Ru(V)–Ru(VII) atoms exhibit CN 5 or 4 with trigonal-bipyramidal and tetrahedral coordination, respectively.The effect of the valence state of the Ru atoms on their stereochemistry is considered. The important role of the Ru–Ru interactions in the structure of the Ru(II)–Ru(V) compounds is established. As a result of the Ru–Ru interactions, the RuX6 octahedra are linked through a face or common edge or give O5Ru–RuO- dimers in which every metal atom occupies one of the vertices of an octahedron formed by the neighboring Ru atom.The dependence of the Ru–Ru and Ru–O bond orders on their lengths is established on the basis of a crystal-structure analysis and the 18-electron rule.  相似文献   

11.
The synthesis and characterization of a family of alternative precursors for the production of CdE nanoparticles (E = S, Se, and Te) is reported. The reaction of Cd(NR2)2 where NR2 = N(SiMe3)2 with n HOR led to the isolation of the following: n = 1 [Cd(mu-OCH2CMe3)(NR2)(py)]2 (1, py = pyridine), Cd[(mu-OC6H3(Me)(2)-2,6)2Cd(NR2)(py)]2 (2), [Cd(mu-OC6H3(CHMe2)(2)-2,6)(NR2)(py)]2 (3), [Cd(mu-OC6H3(CMe3)(2)-2,6)(NR2)(py)]2 (4), [Cd(mu-OC6H2(NH2)(3)-2,4,6)(NR2)(py)]2 (5), and n = 2 [Cd(mu-OC6H3(Me)(2)-2,6)(OC6H3(Me)(2)-2,6)(py)2]2 (6), and [Cd(mu-OC6H3(CMe3)(2)-2,6)(OC6H3(CMe3)(2)-2,6)(THF)]2 (7). For all but 2, the X-ray crystal structures were solved as discrete dinuclear units bridged by alkoxide ligands and either terminal -NR2 or -OR ligands depending on the stoichiometry of the initial reaction. For 2, a trinuclear species was isolated using four mu-OR and two terminal -NR2 ligands. The coordination of the Cd metal center varied from 3 to 5 where the higher coordination numbers were achieved by binding Lewis basic solvents for the less sterically demanding ligands. These complexes were further characterized in solution by 1H, 13C, and 113Cd NMR along with solid-state 113Cd NMR spectroscopy. The utility of these complexes as "alternative precursors" for the controlled preparation of nanocrystalline CdS, CdSe, and CdTe was explored. To synthesize CdE nanocrystals, select species from this family of compounds were individually heated in a coordinating solvent (trioctylphosphine oxide) and then injected with the appropriate chalcogenide stock solution. Transmission electron spectroscopy and UV-vis spectroscopy were used to characterize the resultant particles.  相似文献   

12.
An attempt is made to correlate the crystal structures of ternary chalcogenides of composition AB2X4 with the cationic radius ratio and a pseudo force-constant involving their electronegativities. The resultant diagram adequately resolves structures based on the types K2SO4, monoclinic, olivine, MnY2S4, Th3P4, and CaFe2O4 but structure types based on spinel, Cr3Se4, and Ag2HgI4 are not resolved. Crystal chemical arguments are used to explain these observations and to advance reasons for the successes and failures of this method for predicting structure types.  相似文献   

13.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were applied to crystal-chemical analysis of all known compounds whose structures contain rhodium atoms surrounded by chalcogen atoms. The influence of the rhodium valence state and the nature of the chalcogen on the main features of Rh stereochemistry are discussed. Rhodium atoms exhibit coordination numbers of 6, 5, or 4 with respect to S, Se, or Te atoms; in addition to the bonds with chalcogens, rhodium can form 1 to 4 bonds with metal atoms. The VDP volume for Rh(III), Rh(2.67), and Rh(II) atoms in selenides and tellurides very weakly depends on the valence state, whereas in the case of sulfides, the volume increases rather regularly with a decrease in the metal oxidation number from Rh(III) to Rh(I).  相似文献   

14.
Using the Voronoi–Dirichlet partition procedure and the method of intersecting spheres, it is demonstrated that in the crystal structures of chalcogen-containing compounds, Pt(IV) atoms form only PtX6 octahedra (X = S, Se, Te), whereas in the case of Pt(III) and Pt(II), square coordination by X atoms is typical. The Pt(II) atoms can also form PtX5 square pyramids (X = S, Se), PtS6 octahedra, and PtTe3Pt3 quasi-octahedra in which a platinum atom is located in the trans-position to each coordinated tellurium atom. It was found that Pt(II) atoms in the PtX4 squares (X = S, Se), unlike square-coordinated Pt(III) atoms, can form one or two Pt–M bonds (M is a d metal) and 1 to 4 secondary Pt–Q bonds, where Q is an s metal or hydrogen. The main features of platinum stereochemistry depending on the metal valence state and coordination number (CN) and on the nature of the chalcogen atom were quantitatively characterized in terms of the Voronoi–Dirichlet polyhedra.  相似文献   

15.
16.
Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies, and dipole moments of the title molecules in neutral, positively, and negatively charged ions were studied using density functional method. Ground electronic state was assigned for each molecule. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that, besides ionic component, covalent bonds are formed between the metal s, d orbitals, and the p orbital of S, Se, and Te. For neutral and cationic molecules, the covalent character increases from ScX to CrX and from FeX to CuX with an exception of decrease at MnX and ZnX, while for anionic molecules, the trend is not obvious. For both neutral and charged molecules, the sulfides have the shortest bond distance and largest vibrational frequency, while tellurides have the largest bond distance and smallest vibrational frequency. For neutral and anionic molecules, the dissociation energy of sulfides is the largest, that of tellurides is the smallest, while this only remains true for cationic molecules from ScX(+) to FeX(+).  相似文献   

17.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform a crystal-chemical analysis of compounds whose structures contain Os atoms surrounded by chalcogen atoms. Depending on the valence state, Os atoms bind four to seven X atoms (X = O, S, Se, Te) forming OsX n coordination polyhedra which can be tetrahedra (n = 4), trigonal bipyramids or square pyramids (n = 5), octahedra (n = 6), or pentagonal bipyramids (n = 7). In some compounds, pairs of OsO6 octahedra share edges to form Os–Os bonds. The influence of the Os valence state and the nature of the chalcogen atom on the composition and structure of the [Os a X b ] groups is discussed. On the basis of analysis of the crystal-structural data from the standpoint of the 18-electron rule, dependences of the Os–O and Os–Os bond orders on the bond lengths are proposed.  相似文献   

18.
Multielemental speciation of As, Se, Sb and Te by HPLC-ICP-MS   总被引:2,自引:0,他引:2  
Guerin T  Astruc M  Batel A  Borsier M 《Talanta》1997,44(12):2201-2208
An anion exchange HPLC-ICP-MS procedure allowing the simultaneous multielemental speciation analysis of arsenic, selenium, antimony and tellurium has been developed. Four arsenic species (AsIII, AsV, monomethylarsonic acid and dimethylarsinic acid), two selenium species (SeIV and SeVI) may be determined in a single run as well as one antimony (SbV) and one tellurium species (TeVI). Alternatively Sb and/or Te may be used as internal standards for As and Se speciation studies. Optimisation of ICP-MS conditions led to satisfactory relative (0.01 (SbV) to 1.8 (SeVI) ng ml−1) and absolute detection limits (1–180 pg). Reproducibility ranged from 3.1 to 5.6% and the linearity was verified in the 0–200 ng ml−1 range.  相似文献   

19.
Energetic, geometric and magnetic criteria were applied to examine the stability and/or aromatic character for the cyclic molecules C 4 H 4 M (M = O, S, Se, Te, NH, PH, AsH and SbH) at B3LYP/6-311++G** and MP2/6-311++G** levels of theory. The isodesmic reactions and nuclear independent chemical shifts (NICS) calculations were utilized to examine the molecules for energetic and magnetic criteria, respectively. The isodesmic reaction energies reveal that thiophene (C 4 H 4 S, ?23.269 kcal/mol) and pyrrole (C 4 H 4 NH, ?20.804 kcal/mol) have the greatest aromatic stabilization energies and tellurophene (C 4 H 4 Te, ?15.114 kcal/mol) and stibole (C 4 H 4 SbH, ?1.169 kcal/mol) have the lowest aromatic stabilization energies in their corresponding groups at MP2/6-311++G**. The NICS calculations confirmed the results obtained through isodesmic reaction energies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号