首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We consider the existence of nontrivial solutions of the boundary-value problems for nonlinear fractional differential equations
*20c Da u(t) + l[ f( t,u(t) ) + q(t) ] = 0,    0 < t < 1, u(0) = 0,    u(1) = bu(h), \begin{array}{*{20}{c}} {{{\mathbf{D}}^\alpha }u(t) + {{\lambda }}\left[ {f\left( {t,u(t)} \right) + q(t)} \right] = 0,\quad 0 < t < 1,} \\ {u(0) = 0,\quad u(1) = \beta u(\eta ),} \\ \end{array}  相似文献   

2.
In this paper we consider a nonlinear evolution reaction–diffusion system governed by multi-valued perturbations of m-dissipative operators, generators of nonlinear semigroups of contractions. Let X and Y be real Banach spaces, ${\mathcal{K}}In this paper we consider a nonlinear evolution reaction–diffusion system governed by multi-valued perturbations of m-dissipative operators, generators of nonlinear semigroups of contractions. Let X and Y be real Banach spaces, K{\mathcal{K}} be a nonempty and locally closed subset in \mathbbR ×X×YA:D(A) í X\rightsquigarrow X, B:D(B) í Y\rightsquigarrow Y{\mathbb{R} \times X\times Y,\, A:D(A)\subseteq X\rightsquigarrow X, B:D(B)\subseteq Y\rightsquigarrow Y} two m-dissipative operators, F:K ? X{F:\mathcal{K} \rightarrow X} a continuous function and G:K \rightsquigarrow Y{G:\mathcal{K} \rightsquigarrow Y} a nonempty, convex and closed valued, strongly-weakly upper semi-continuous (u.s.c.) multi-function. We prove a necessary and a sufficient condition in order that for each (t,x,h) ? K{(\tau,\xi,\eta)\in \mathcal{K}}, the next system
{ lc u¢(t) ? Au(t)+F(t,u(t),v(t))    t 3 tv¢(t) ? Bv(t)+G(t,u(t),v(t))    t 3 tu(t)=x,    v(t)=h, \left\{ \begin{array}{lc} u'(t)\in Au(t)+F(t,u(t),v(t))\quad t\geq\tau \\ v'(t)\in Bv(t)+G(t,u(t),v(t))\quad t\geq\tau \\ u(\tau)=\xi,\quad v(\tau)=\eta, \end{array} \right.  相似文献   

3.
For arbitrary [α, β] ⊂ R and p > 0, we solve the extremal problem
òab | x(k)(t) |qdt ? sup,     q 3 p,    k = 0    \textor    q 3 1,    k 3 1, \int\limits_\alpha^\beta {{{\left| {{x^{(k)}}(t)} \right|}^q}dt \to \sup, \quad q \geq p,\quad k = 0\quad {\text{or}}\quad q \geq 1,\quad k \geq 1},  相似文献   

4.
Consider a stochastic process {X t , 0 ≤ tT} governed by a stochastic differential equation given by
dXt = S(Xt)   dt + e  dWtH,    X0=x0,    0 £ tT dX_t= S(X_t) \;dt + \epsilon \; dW_t^H,\quad X_0=x_0,\quad 0 \leq t \leq T  相似文献   

5.
We consider the Hill operator
Ly = - y¢¢ + v(x)y,    0 £ x £ p,Ly = - y^{\prime \prime} + v(x)y, \quad0 \leq x \leq \pi,  相似文献   

6.
This paper is concerned with the following periodic Hamiltonian elliptic system
{l-Du+V(x)u=g(x,v) in  \mathbbRN,-Dv+V(x)v=f(x,u) in  \mathbbRN,u(x)? 0 and v(x)?0 as  |x|?¥,\left \{\begin{array}{l}-\Delta u+V(x)u=g(x,v)\, {\rm in }\,\mathbb{R}^N,\\-\Delta v+V(x)v=f(x,u)\, {\rm in }\, \mathbb{R}^N,\\ u(x)\to 0\, {\rm and}\,v(x)\to0\, {\rm as }\,|x|\to\infty,\end{array}\right.  相似文献   

7.
In this paper we study the existence of a solution in ${L^\infty_{\rm loc}(\Omega)}In this paper we study the existence of a solution in Lloc(W){L^\infty_{\rm loc}(\Omega)} to the Euler–Lagrange equation for the variational problem
inf[`(u)] + W1,¥0(W) òW (ID(?u) + g(u)) dx,                   (0.1)\inf_{\bar u + W^{1,\infty}_0(\Omega)} \int\limits_{\Omega} ({\bf I}_D(\nabla u) + g(u)) dx,\quad \quad \quad \quad \quad(0.1)  相似文献   

8.
Qingliu Yao 《Acta Appl Math》2010,110(2):871-883
This paper studies the existence of a positive solution to the second-order periodic boundary value problem
u¢¢(t)+l(t)u(t)=f(t,u(t)),    0 < t < 2p,  u(0)=u(2p), u(0)=u(2p),u^{\prime \prime }(t)+\lambda (t)u(t)=f\bigl(t,u(t)\bigr),\quad 0相似文献   

9.
In this paper we study the following non-autonomous stochastic evolution equation on a Banach space E: $({\rm SE})\quad \left\{\begin{array}{ll} {\rm d}U(t) = (A(t)U(t) +F(t,U(t)))\,{\rm d}t + B(t,U(t))\,{\rm d}W_H(t), \quad t\in [0,T], \\ U(0) = u_0.\end{array}\right.$ Here, ${(A(t))_{t\in [0,T]}}In this paper we study the following non-autonomous stochastic evolution equation on a Banach space E:
(SE)    {ll dU(t) = (A(t)U(t) +F(t,U(t))) dt + B(t,U(t)) dWH(t),     t ? [0,T], U(0) = u0.({\rm SE})\quad \left\{\begin{array}{ll} {\rm d}U(t) = (A(t)U(t) +F(t,U(t)))\,{\rm d}t + B(t,U(t))\,{\rm d}W_H(t), \quad t\in [0,T], \\ U(0) = u_0.\end{array}\right.  相似文献   

10.
A differential operator ?, arising from the differential expression $$lv(t) \equiv ( - 1)^r v^{[n]} (t) + \sum\nolimits_{k = 0}^{n - 1} {p_k } (t)v^{[k]} (t) + Av(t),0 \leqslant t \leqslant 1,$$ , and system of boundary value conditions $$P_v [v] = \sum\nolimits_{k = 0}^{n_v } {\alpha _{vk} } r^{[k]} (1) = 0.v - 1, \ldots ,\mu ,0 \leqslant \mu< n$$ is considered in a Banach space E. Herev [k](t)=(a(t) d/dt) k v(t)a(t) being continuous fort?0, α(t) >0 for t > 0 and \(\int_0^1 {\frac{{dz}}{{a(z)}} = + \infty ;}\) the operator A is strongly positive in E. The estimates , are obtained for ?: n even, λ varying over a half plane.  相似文献   

11.
The aim of this study is to prove global existence of classical solutions for systems of the form ${\frac{\partial u}{\partial t} -a \Delta u=-f(u,v)}The aim of this study is to prove global existence of classical solutions for systems of the form \frac?u?t -a Du=-f(u,v){\frac{\partial u}{\partial t} -a \Delta u=-f(u,v)} , \frac?v?t -b Dv=g(u,v){\frac{\partial v}{\partial t} -b \Delta v=g(u,v)} in (0, +∞) × Ω where Ω is an open bounded domain of class C 1 in \mathbbRn{\mathbb{R}^n}, a > 0, b > 0 and f, g are nonnegative continuously differentiable functions on [0, +∞) × [0, +∞) satisfying f (0, η) = 0, g(x,h) £ C j(x)eahb{g(\xi,\eta) \leq C \varphi(\xi)e^{\alpha {\eta^\beta}}} and g(ξ, η) ≤ ψ(η)f(ξ, η) for some constants C > 0, α > 0 and β ≥ 1 where j{\varphi} and ψ are any nonnegative continuously differentiable functions on [0, +∞) such that j(0)=0{\varphi(0)=0} and limh? +¥hb-1y(h) = l{ \lim_{\eta \rightarrow +\infty}\eta^{\beta -1}\psi(\eta)= \ell} where is a nonnegative constant. The asymptotic behavior of the global solutions as t goes to +∞ is also studied. For this purpose, we use the appropriate techniques which are based on semigroups, energy estimates and Lyapunov functional methods.  相似文献   

12.
There are many studies on the asymptotic behavior of solutions of differential equations. In the present paper, we consider another aspect of this problem, namely, the rate of the asymptotic convergence of solutions. Let ϕ (t) be a scalar continuous monotonically increasing positive function tending to ∞ as t → ∞. It is established that if all solutions of a differential system satisfy the inequality
then the solution x(t; t 0, x 0) of this differential system tends to 0 faster than .__________Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 57, No. 1, pp. 137–142, January, 2005.  相似文献   

13.
Some oscillation criteria are established by the averaging technique for the second order neutral delay differential equation of Emden-Fowler type (a(t)x¢(t))¢+q1(t)| y(t-s1)|a sgn y(t-s1) +q2(t)| y(t-s2)|b sgn y(t-s2)=0,    t 3 t0,(a(t)x'(t))'+q_1(t)| y(t-\sigma_1)|^{\alpha}\,{\rm sgn}\,y(t-\sigma_1) +q_2(t)| y(t-\sigma_2)|^{\beta}\,{\rm sgn}\,y(t-\sigma_2)=0,\quad t \ge t_0, where x(t) = y(t) + p(t)y(t − τ), τ, σ1 and σ2 are nonnegative constants, α > 0, β > 0, and a, p, q 1, q2 ? C([t0, ¥), \Bbb R)q_2\in C([t_0, \infty), {\Bbb R}) . The results of this paper extend and improve some known results. In particular, two interesting examples that point out the importance of our theorems are also included.  相似文献   

14.
In this paper, we consider the following nonlinear fractional three-point boundary-value problem:
*20c D0 + a u(t) + f( t,u(t) ) = 0,    0 < t < 1, u(0) = u¢(0) = 0,    u¢(1) = ò0h u(s)\textds, \begin{array}{*{20}{c}} {D_{0 + }^\alpha u(t) + f\left( {t,u(t)} \right) = 0,\,\,\,\,0 < t < 1,} \\ {u(0) = u'(0) = 0,\,\,\,\,u'(1) = \int\limits_0^\eta {u(s){\text{d}}s,} } \\ \end{array}  相似文献   

15.
In this paper we propose a periodic, mean-reverting Ornstein–Uhlenbeck process of the form
dXt=(L(t)-a Xtdt + s dBt,     t 3 0, dX_t=(L(t)-\alpha\, X_t)\, dt + \sigma\, dB_t, \quad t\geq 0,  相似文献   

16.
We study the solvability of the minimization problem
minh ? Ka ò0T a(t)[ f( |h¢(t)| ) + g( h(t) ) ]  dt,\mathop {\min }\limits_{\eta \in \mathcal{K}_\alpha } \int_0^T {\alpha (t)\left[ {f\left( {|\eta '(t)|} \right) + g\left( {\eta (t)} \right)} \right]} \,dt,  相似文献   

17.
We study the problem of finding the best constant in the generalized Poincaré inequality
lpqr = min\frac|| y¢ ||Lp[0,1]|| y ||Lp[0,1],        ò01 | y(t) |r - 2y(t)dt = 0, {{\rm{\lambda }}_{pqr}} = \min \frac{{\left\| {y'} \right\|{L_p}[0,1]}}{{\left\| y \right\|{L_p}[0,1]}},\quad \quad \mathop {\int }\limits_0^1 {\left| {y(t)} \right|^{r - 2}}y(t)dt = 0,  相似文献   

18.
This paper deals with the initial value problem of the type ${\frac{\partial{w}}{\partial{t}}}=L\left(t,x,w,{\frac{\partial{w}}{\partial{x_i}}}\right)\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(1)$ $w(0,x)=\varphi(x)\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(2)$ where t is the time, L is a linear first order operator (matrix-type) in Quaternionic Analysis and ${\varphi}This paper deals with the initial value problem of the type
\frac?w?t=L(t,x,w,\frac?w?xi)                                 (1){\frac{\partial{w}}{\partial{t}}}=L\left(t,x,w,{\frac{\partial{w}}{\partial{x_i}}}\right)\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(1)  相似文献   

19.
We find the exact values of the n-widths for the classes of periodic differentiable functions in L 2[0, 2π] satisfying the constraint
ò0h t[(W)\tilde] m1/m (f(r) ;t)dt \leqslant F(h) ,\int\limits_0^h {t\tilde \Omega _m^{1/m} (f^{(r)} ;t)dt \leqslant \Phi (h)} ,  相似文献   

20.
We investigate the rate of convergence of series of the form
where λ = (λn), 0 = λ0 < λn ↑ + ∞, n → + ∞, β = {βn: n ≥ 0} ⊂ ℝ+, and τ(x) is a nonnegative function nondecreasing on [0; +∞), and
where the sequence λ = (λn) is the same as above and f (x) is a function decreasing on [0; +∞) and such that f (0) = 1 and the function ln f(x) is convex on [0; +∞).__________Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 56, No. 12, pp. 1665 – 1674, December, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号