首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

4.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

5.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

6.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

7.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

8.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

9.
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg-1.To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm-2 and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.  相似文献   

10.
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(InxNi@SiO2)have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In0.5Ni@SiO2)shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.  相似文献   

11.
Raman spectroscopy was applied to characterize the species deposited from the mass-selected C60 ion beam which was accelerated to 900 eV. The substrates for the deposition were (0001) surface of highly oriented pyrolitic graphite and (111) surface of gold crystal. The species do not exhibit the Raman scattering features of buckminsterfullerene, but displays peaks at 1585 and 1332 cm-1 instead. The former peak is the chararteristic Ranan peak of hexagonal graphite, and the latter can be attributed to the amorphous carbon in sp3 hybridization. The result reveals that C60 was collapsed to form a new phase when it collides on the solid surface.  相似文献   

12.
为了研究C60的结构特性,我们最近在实验中将加这后的C60离子束沉积在固体表面,对其沉积后的形态进行了共焦显微拉曼光谱的表征.在记录的光谱中已检测不出C60原有的特征谱问,说明C60离子在高速憧击固体表面后,已经完全失去了原有的球状构型.C60的t)[R实验在自制的串级飞  相似文献   

13.
The reaction barriers of (He+C60(He@60)) have been calculated by the quantum-chemical method EHMO/ASED in the following four paths: (1) penetrate through the pentagon on the C60 cage; (2) penetrate through the hexagon on the C60 cage,(3) penetrate through the short bond; (4) penetrate through the long bond. Corresponding to each path, there are two choices: (a) while He penetrate C60 cage, the distances of the C’s which are the most adjacent to He are changed with a planar extension and a concerned window is formed; (b) while He penetrate C60 cage, the distances of the C’s which are the most adjacent to He are changed with a spherical extension and a concerned window is formed. The results are given in Figs. 1-2 and Tables 1-2. It is shown that the reaction through path(4) with choice (a) has the least reaction barrier, being optimum. At that case, a window of 9-membered ring is formed. Because the window extension of C6H6 is more free than that of C60, the barrier of He penetrating through C6H6 will be lower than that of He penetrating through C60.  相似文献   

14.
系统地研究了内嵌复合物X@C60(X=第IA簇或第VIIA族元素)形成过程的能量变化,以及其中笼环境下X与C60间相互作用的变化特征与键本质。结果表明:(1)C60笼环境力场具有球对称性;(2)各种分解与总相互作用与内嵌原子的原子序数或原子半径呈现出规则的递变规律;(3)除I外,其余元素原子与C60间的作用对各自复合物的稳定性都有正效应的较大贡献;(4)X在C60笼环境中居心或偏心的稳定位置是各种  相似文献   

15.
The microdisk electrode voltammetric behaviors of C_(60) are reported in this communication. This was accomplished by use of a mixed solvent system as Acetonotrile:Xylene=1:4 and a supporting electrolyte as 0.1 mol·L~(-1) Bu_4NPF_6. Au, Pt and Hg (Pt) were used as working electrode. In this new conditions, the successive six step reduction of C60 were obtained at below 15 ℃. It was found that the former five steps are all the single electron reversible reduction, but behaviors of the sixth steps are like EC' processes. Several electrochemical data were determined.  相似文献   

16.
Fullerene hydrides were prepared by hydrogenation of fullerences C60 and C70 using proton transfer from 9,10-dihydroanthracene to fullerene and were studied by mass spectrometry (electron impact, field desorption), IR, UV, and1H and13C NMR spectroscopy. The main product of the hydrogenation of C60 is C60H36, which is sufficiently stable. Hydrogenation of fullerene C70 gives a series of polyhydrides C70H n (n=36–46), and the main product is C70H36. The dehydrogenation of C60H36 by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is not quantitative and results in the formation of fullerene derivatives along with C60. The comparison of the IR and1H and13C NMR spectral data for solid C60H36 with the theoretical calculations suggests that the fullerene hydride has aT-symmetric structure and contains four isolated benzenoid rings located at tetrahedral positions on the surface of the closed skeleton of the molecule. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya. No. 4, pp. 671–678, April, 1997.  相似文献   

17.
Cu/ZrO2-Al2O3上表面氧物种脱附及其对催化性能的影响   总被引:1,自引:0,他引:1  
采用XRD,TPD-MS和TPR方法研究了ZrO2的改性对CuO/γ-Al2O3催化剂上铜物种人散状态,表面氧物种的脱附和恢复性能,铜物种还原再氧行为的影响,并CO氧化反应为探针考察了催化剂的氧化活性,结果表明,ZrO2的存在的铜物种在γ-Al2O3载体上的分散容量降低,促进CuO/γ-Al2O3催化剂上表面氧物种的脱附,同时有效地促进铜物种的还原,从而增加CO的氧化活性,实验还发现热处理条件对催  相似文献   

18.
采用自组装生长聚苯乙烯胶体模板和溶胶-凝胶法,制备出三维(3D)有序结构In掺杂TiO2(IO-TiO2-In)薄膜可见光催化剂.光催化实验证明,IO-TiO2-In薄膜降解甲醛的可见光活性是TiO2和三维有序结构TiO2(IOTiO2)薄膜的5倍.利用X射线电子衍射(XRD)谱、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和紫外-可见(UV-Vis)漫反射吸收光谱确定了催化剂的晶相结构、表面微结构和能带结构.结果表明,IO-TiO2-In薄膜具有锐钛矿型三维有序结构,与TiO2相比,增加了比表面积,提高光的利用率;掺入的In离子在薄膜表面形成In2O3和O-In-Clx(x=1,2)物种,既增强可见光的吸收,又有效地促进了光生载流子的分离,提高了光生载流子在固/气界面参加光催化反应的利用率,使催化剂的可见光催化活性显著提高.  相似文献   

19.
采用固相浸渍法制备了一系列NiO/CeO2催化剂,并通过与常规湿浸渍法比较,考察了制备方法对催化剂和CO氧化反应性能的影响.同时结合X射线衍射(XRD),N2吸附-脱附(BET),透射电镜(TEM),氢气-程序升温还原(H2-TPR),拉曼(Raman)光谱,X射线光电子能谱(XPS)等手段对催化剂的结构和表面物种分散状态进行了表征.CO氧化活性测试结果表明,当镍负载量相同时,固相浸渍法制备的催化剂相比于湿浸渍法表现出更好的催化性能.TEM、XPS、H2-TPR结果表明,固相浸渍法更有利于加强镍铈间的相互作用和得到高分散的镍物种,从而促进镍物种的还原.Raman结果表明固相浸渍法相比于湿浸渍法能产生更多氧空位,这有利于氧气在催化剂表面的活化,使得CO氧化反应更容易进行.  相似文献   

20.
通过全甲基化环糊精和卟啉之间的"Click"反应,合成了一种不对称环糊精修饰的卟啉衍生物,并对其结构进行了表征.该化合物与氯金酸作用可以形成平均粒径为5 nm的水溶性金纳米粒子,该金纳米粒子进一步与C60作用形成网状纳米聚集体,并通过紫外光谱和透射电子显微镜验证了聚集体的结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号