首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This paper reports the results of a rapid method to determine sucrose in chocolate mass using near infrared spectroscopy (NIRS). We applied a broad-based calibration approach, which consists in putting together in one single calibration samples of various types of chocolate mass. This approach increases the concentration range for one or more compositional parameters, improves the model performance and requires just one calibration model for several recipes. The data were modelled using partial least squares (PLS) and multiple linear regression (MLR). The MLR models were developed using a variable selection based on the coefficient regression of PLS and genetic algorithm (GA). High correlation coefficients (0.998, 0.997, 0.998 for PLS, MLR and GA-MLR, respectively) and low prediction errors confirms the good predictability of the models. The results show that NIR can be used as rapid method to determine sucrose in chocolate mass in chocolate factories.  相似文献   

2.
This study presents an analytical method for determining interfacial tension and relative density in insulating oils using near infrared spectrometry (NIR). Five different strategies of regression were evaluated: partial least squares (PLS) with significant regression coefficients selected by jack-knife algorithm; interval PLS (iPLS); multiple linear regression (MLR) with variable selection by genetic algorithm (MLR/GA), successive projections algorithm (MLR/SPA) and stepwise strategy (SR/MLR). The overall results point to MLR/SPA as the best modeling strategy. The strategy is simpler and uses fewer spectral variables.  相似文献   

3.
This paper evaluates analytical methods based on near infrared (NIR) and middle infrared (MIR) spectroscopy and multivariate calibration to monitor the stability of biodiesel. There was a focus on three parameters: oxidative stability index, acid number and water content. Ethylic and methylic biodiesel from different feedstocks were used in experiments of accelerated aging, in order to take into account the wide variety of oilseeds and feedstocks available in Brazil. Partial least squares (PLS) and multiple linear regression (MLR) models were developed. Different pre-processing techniques and spectral variable/regions selection algorithms were evaluated. For MLR models, the successive projection algorithm (SPA) was employed. Interval PLS (iPLS) and selection of variables taking into account the significant regression coefficients were used for PLS models. Results showed that both near and middle infrared regions, and all variable selection methods tested were efficient for predicting these three important quality parameters of B100, the root mean squares error of prediction (RMSEP) values being comparable to the reproducibility of the corresponding standard method for each property investigated.  相似文献   

4.
《中国化学会会志》2017,64(2):152-163
This paper presents a simple and sensitive method for the simultaneous determination of methyl paraben (MP ) and phenol (PO ) based on the application of successive projections algorithm (SPA ) to the first derivative spectra (200–350 nm). SPA is used for variables selection in order to obtain multiple linear regression (MLR ) models using a small subset of wavelengths. The starting vector and the number of variables are optimized and the best variables are selected according to the sequence of projection operations on the spectral data matrix of the calibration set. Principal component regression and partial least squares models are also developed for comparison. The best models are found to be SPA‐MLR using seven wavelengths from the first‐derivative spectra with a root‐mean‐square error of prediction (RMSEP) of 0.08 for MP and eight wavelengths with RMSEP of 0.31 for the determination of PO . The accuracy of the proposed method is confirmed by spiked recovery test on cosmetic samples with satisfactory results (86–110%). Analysis results of the cosmetic samples are also statistically compared with those obtained from the HPLC method, showing no significant difference regarding accuracy and precision. The results indicate the potential of SPA‐MLR and derivative spectrophotometry for rapid and sensitive analysis of cosmetic samples.  相似文献   

5.
以普通玉米籽粒为试验材料,在应用遗传算法结合偏最小二乘回归法对近红外光谱数据进行特征波长选择的基础上,应用偏最小二乘回归法建立了特征波长测定玉米籽粒中淀粉含量的校正模型.试验结果表明,基于11个特征波长所建立的校正模型,其校正误差(RMSEC)、交叉检验误差(RMSECV)和预测误差(RMSEP)分别为0.30%、0.35%和0.27%,校正数据集和独立的检验数据集的预测值与实际测定值之间的相关系数分别达到0.9279和0.9390,与全光谱数据所建立的预测模型相比,在预测精度上均有所改善,表明应用遗传算法和PLS进行光谱特征选择,能获得更简单和更好的模型,为玉米籽粒中淀粉含量的近红外测定和红外光谱数据的处理提供了新的方法与途径.  相似文献   

6.
Using principal component regression (PCR) as a multivariate calibration tool, always brings up the question what subset of factors, i.e. principal components (PCs) gives the best calibration model. Normally factor selection is based on deterministic methods like top–down procedures, forward–backward-stepwise variable selection or correlated principal component regression (CPCR). In contrast to this, we applied a stochastic method, i.e. a genetic algorithm (GA) for factor selection in this paper. A new kind of fitness function was applied which combined the prediction error of the calibration and an independent validation set. The performance of eigenvalue and correlation ranking was compared. A general statistical criterion for judging the significance of differences between individual calibration models is introduced. In this context it could be shown that for the uncertainties of the standard deviations representing the prediction errors a very simple approximation formula holds which only includes the number of standards. For the current applications it is shown that the GA gives a result very close to CPCR-solutions.  相似文献   

7.
Carolina C. Acebal 《Talanta》2010,82(1):222-226
A novel variable selection strategy for multiple lineal regression (MLR), the successive projections algorithm (SPA), was applied to spectrophotometric data (190-320 nm) for the simultaneous determination of monosodium glutamate (MSG), guanosine-5′-monophosphate (GMP) and inosine-5′-monophosphate (IMP) in dehydrated broths samples. This selection method uses simple operations in a vector space to minimize variable collinearity and has become an interesting variable selection strategy for multivariate calibration. In this work, nine, six and four wavelengths for MSG, GMP and IMP, respectively, were selected to construct calibrations models in order to solve successfully the serious spectral overlapping in samples containing these analytes. The relative errors of prediction (REP) for the validation set were 2.3%, 0.9% and 1.8% for MSG, GMP and IMP, respectively. Commercial samples were analysed and a recovery study was carried out to verify the accuracy of the proposed method with satisfactory results. A continuous flow system was used to develop a simple, cheap and rapid method (sample throughput: 200 h−1), without any previous extraction step.  相似文献   

8.
In this work it has been shown that the routine ASTM methods (ASTM 4052, ASTM D 445, ASTM D 4737, ASTM D 93, and ASTM D 86) recommended by the ANP (the Brazilian National Agency for Petroleum, Natural Gas and Biofuels) to determine the quality of diesel/biodiesel blends are not suitable to prevent the adulteration of B2 or B5 blends with vegetable oils. Considering the previous and actual problems with fuel adulterations in Brazil, we have investigated the application of vibrational spectroscopy (Fourier transform (FT) near infrared spectrometry and FT-Raman) to identify adulterations of B2 and B5 blends with vegetable oils. Partial least square regression (PLS), principal component regression (PCR), and artificial neural network (ANN) calibration models were designed and their relative performances were evaluated by external validation using the F-test. The PCR, PLS, and ANN calibration models based on the Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy were designed using 120 samples. Other 62 samples were used in the validation and external validation, for a total of 182 samples. The results have shown that among the designed calibration models, the ANN/FT-Raman presented the best accuracy (0.028%, w/w) for samples used in the external validation.  相似文献   

9.
Diesel properties determined by ASTM reference methods as cetane index, density, viscosity, distillation temperatures at 50% (T50) and 85% (T85) recovery, and the total sulfur content (%, w/w) were modeled by FTIR-ATR, FTNIR, and FT-Raman spectroscopy using partial last square regression (PLS) and artificial neural network (ANN) spectral analysis. In the PLS models, 45 diesel samples were used in the training group and the other 45 samples were used in the validation. In the ANN analysis a modular feedforward network was used. Sixty diesel samples were used in the neural network training and other 30 samples were used in the validation. Two different ATR configurations were compared in the FTIR, a conventional (ATR1) and an immersion (ATR2) cell. The ATR1 cell presented the best results, with smaller prediction errors (root mean square error of prediction, RMSEP). The comparison of the three PLS models (FTIR-ATR1, FTNIR, and FT-Raman) shows that reasonable values of R2 and RMSEP were obtained by the FTIR-ATR1 and FTNIR models in the evaluation of density, viscosity, and T50. The PLS/FT-Raman models presented reasonable results only for the T50 property. None of the techniques was able to generate suitable PLS calibration models for the determination of sulfur content. The ANN/FT-Raman models presented the best performances, with all models presenting R2-values above 85% some of them with RMSEP values significantly smaller than those obtained with FTIR-ATR and FTNIR. The ANN/FT-Raman and ANN/FTIR-ATR1 models were able to estimate the total sulfur content of diesel with 0.01% (w/w) accuracy.  相似文献   

10.
In recent 10 years, like other disciplines influenced by the fast development of PC technique, chemometrics has been used in many analytical methods, especially in instrumental analysis. This article describes applications and comparison of multivariate linear regression (MLR), principal component analysis (PCA), principal component regression (PCR), partial least square (PLS), neural network (ANN), fuzzy and model recognition. A better calibration method can be a great help to improve the efficiency of the routine analytical work.  相似文献   

11.
This work evaluates the use of near-infrared (NIR) overtone regions to determine biodiesel content, as well potential adulteration with vegetable oil, in diesel/biodiesel blends. For this purpose, NIR spectra (12,000–6300 cm−1) were obtained using three different optical path lengths: 10 mm, 20 mm and 50 mm. Two strategies of regression with variable selection were evaluated: partial least squares (PLS) with significant regression coefficients selected by Jack-Knife algorithm (PLS/JK) and multiple linear regression (MLR) with wavenumber selection by successive projections algorithm (MLR/SPA). For comparison, the results obtained by using PLS full-spectrum models are also presented. In addition, the performance of models using NIR (1.0 mm optical path length, 9000–4000 cm−1) and MIR (UATR – universal attenuated total reflectance, 4000–650 cm−1) spectral regions was also investigated. The results demonstrated the potential of overtone regions with MLR/SPA regression strategy to determine biodiesel content in diesel/biodiesel blends, considering the possible presence of raw oil as a contaminant. This strategy is simple, fast and uses a fewer number of spectral variables. Considering this, the overtone regions can be useful to develop low cost instruments for quality control of diesel/biodiesel blends, considering the lower cost of optical components for this spectral region.  相似文献   

12.
By employing the simple but effective principle ‘survival of the fittest’ on which Darwin's Evolution Theory is based, a novel strategy for selecting an optimal combination of key wavelengths of multi-component spectral data, named competitive adaptive reweighted sampling (CARS), is developed. Key wavelengths are defined as the wavelengths with large absolute coefficients in a multivariate linear regression model, such as partial least squares (PLS). In the present work, the absolute values of regression coefficients of PLS model are used as an index for evaluating the importance of each wavelength. Then, based on the importance level of each wavelength, CARS sequentially selects N subsets of wavelengths from N Monte Carlo (MC) sampling runs in an iterative and competitive manner. In each sampling run, a fixed ratio (e.g. 80%) of samples is first randomly selected to establish a calibration model. Next, based on the regression coefficients, a two-step procedure including exponentially decreasing function (EDF) based enforced wavelength selection and adaptive reweighted sampling (ARS) based competitive wavelength selection is adopted to select the key wavelengths. Finally, cross validation (CV) is applied to choose the subset with the lowest root mean square error of CV (RMSECV). The performance of the proposed procedure is evaluated using one simulated dataset together with one near infrared dataset of two properties. The results reveal an outstanding characteristic of CARS that it can usually locate an optimal combination of some key wavelengths which are interpretable to the chemical property of interest. Additionally, our study shows that better prediction is obtained by CARS when compared to full spectrum PLS modeling, Monte Carlo uninformative variable elimination (MC-UVE) and moving window partial least squares regression (MWPLSR).  相似文献   

13.
In multivariate spectral calibration by principal component regression (PCR), the principal components (PCs) are calculated from the response data measured at all employed instrument channels; however some channels are redundant and their responses do not possess useful information. Thus, the extracted PCs possess mixed information from both useful and redundant channels. In this work, we propose a segmentation approach based on unsupervised pattern recognition to identify the most informative spectral region and then to construct a stable multivariate calibration model by PCR. In this method, the instrument channels are clustered into different segments via Kohonen self‐organization map. The spectral data of each segment are then subjected to PCA and the derived PCs are used as input variables for an inverse least square (ILS) regression model employing stepwise selection of the informative PCs. The proposed method was evaluated by the analysis of four simulated and six experimental data sets. It was found that our proposed method can model the above data sets with prediction errors lower than conventional partial least squares (PLS) and PCR methods. In addition, the prediction ability of our method was better than the previously reported models for these data sets. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
15.
提出了用近红外光谱测定端羟基环氧乙烷-四氢呋喃共聚醚(PET)的羟值,结合主成分回归和偏最小二乘法建立了PET羟值与其近红外光谱之间的关联模型。结果表明,近红外光谱法与化学分析法的测定结果一致;近红外光谱法测定PET羟值的相对误差在5%以内;利用遗传算法选择部分波长建立校正可以降低模型的预测误差。  相似文献   

16.
The successive projections algorithm (SPA) is widely used to select variables for multiple linear regression (MLR) modeling. However, SPA used only once may not obtain all the useful information of the full spectra, because the number of selected variables cannot exceed the number of calibration samples in the SPA algorithm. Therefore, the SPA-MLR method risks the loss of useful information. To make a full use of the useful information in the spectra, a new method named “consensus SPA-MLR” (C-SPA-MLR) is proposed herein. This method is the combination of consensus strategy and SPA-MLR method. In the C-SPA-MLR method, SPA-MLR is used to construct member models with different subsets of variables, which are selected from the remaining variables iteratively. A consensus prediction is obtained by combining the predictions of the member models. The proposed method is evaluated by analyzing the near infrared (NIR) spectra of corn and diesel. The results of C-SPA-MLR method showed a better prediction performance compared with the SPA-MLR and full-spectra PLS methods. Moreover, these results could serve as a reference for combination the consensus strategy and other variable selection methods when analyzing NIR spectra and other spectroscopic techniques.  相似文献   

17.
Ni Xin  Qinghua Meng  Yizhen Li  Yuzhu Hu 《中国化学》2011,29(11):2533-2540
This paper indicates the possibility to use near infrared (NIR) spectral similarity as a rapid method to estimate the quality of Flos Lonicerae. Variable selection together with modelling techniques is utilized to select representative variables that are used to calculate the similarity. NIR is used to build calibration models to predict the bacteriostatic activity of Flos Lonicerae. For the determination of the bacteriostatic activity, the in vitro experiment is used. Models are built for the Gram‐positive bacteria and also for the Gram‐negative bacteria. A genetic algorithm combined with partial least squares regression (GA‐PLS) is used to perform the calibration. The results of GA‐PLS models are compared to interval partial least squares (iPLS) models, full‐spectrum PLS and full‐spectrum principal component regression (PCR) models. Then, the variables in the two GA‐PLS models are combined and then used to calculate the NIR spectral similarity of samples. The similarity based on the characteristic variables and full spectrum is used for evaluating the fingerprints of Flos Lonicerae, respectively. The results show that the combination of variable selection method, modelling techniques and similarity analysis might be a powerful tool for quality control of traditional Chinese medicine (TCM).  相似文献   

18.
This work proposes a modification to the successive projections algorithm (SPA) aimed at selecting spectral variables for multiple linear regression (MLR) in the presence of unknown interferents not included in the calibration data set. The modified algorithm favours the selection of variables in which the effect of the interferent is less pronounced. The proposed procedure can be regarded as an adaptive modelling technique, because the spectral features of the samples to be analyzed are considered in the variable selection process. The advantages of this new approach are demonstrated in two analytical problems, namely (1) ultraviolet–visible spectrometric determination of tartrazine, allure red and sunset yellow in aqueous solutions under the interference of erythrosine, and (2) near-infrared spectrometric determination of ethanol in gasoline under the interference of toluene. In these case studies, the performance of conventional MLR-SPA models is substantially degraded by the presence of the interferent. This problem is circumvented by applying the proposed Adaptive MLR-SPA approach, which results in prediction errors smaller than those obtained by three other multivariate calibration techniques, namely stepwise regression, full-spectrum partial-least-squares (PLS) and PLS with variables selected by a genetic algorithm. An inspection of the variable selection results reveals that the Adaptive approach successfully avoids spectral regions in which the interference is more intense.  相似文献   

19.
A new variable selection algorithm is described, based on ant colony optimization (ACO). The algorithm aim is to choose, from a large number of available spectral wavelengths, those relevant to the estimation of analyte concentrations or sample properties when spectroscopic analysis is combined with multivariate calibration techniques such as partial least-squares (PLS) regression. The new algorithm employs the concept of cooperative pheromone accumulation, which is typical of ACO selection methods, and optimizes PLS models using a pre-defined number of variables, employing a Monte Carlo approach to discard irrelevant sensors. The performance has been tested on a simulated system, where it shows a significant superiority over other commonly employed selection methods, such as genetic algorithms. Several near infrared spectroscopic experimental data sets have been subjected to the present ACO algorithm, with PLS leading to improved analytical figures of merit upon wavelength selection. The method could be helpful in other chemometric activities such as classification or quantitative structure-activity relationship (QSAR) problems.  相似文献   

20.
将滴定体系调节至pH 2.0,用碱标准溶液滴定至特定pH所消耗滴定荆为测量指标,构建了多组分有机酸滴定数据阵,分别以主成分回归法、偏最小二乘法以及人工神经元网络法进行多组分拟合.结果表明,偏最小二乘法的拟合结果最佳,对混合体系中乙酸、乳酸、草酸、琥珀酸、柠檬酸和乌头酸总量的相对预测均方根误差分别为5.80%、8.88%...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号