首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Microcontact printing (µCP) has been used to introduce temporary hydrophobic barriers on carboxymethylated dextran (CMD) hydrogels on gold. Among the investigated types of inks, tetraoctadecylammonium bromide (TOAB), electrostatically bound to the CMD layer, provided the most well-defined features both with respect to pattern-definition and reversibility upon exposure to a regeneration solution. The printed patterns were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), microscopic wetting and imaging null ellipsometry to explore the influence of concentration of ink solution and contact time on the appearance of the printed layer. AFM revealed that the printed TOAB molecules aggregated into clusters rather than into a homogeneous mono- or multilayer on the CMD hydrogel. It was also observed that printed areas of TOAB that are larger than 25µm are inhomogeneous most likely because of an edge transfer lithography (ETL) mechanism. A protein model system based on Protein A-rabbit antimouse Fc was used to evaluate the potential of the patterned surface as a protein microarray chip by means of surface plasmon microscopy (SPM). Moreover, non-specific adsorption of several proteins onto TOAB barriers was also studied using surface plasmon resonance (SPR), and it is evident that undesired adsorption can be eliminated by removing barriers after ligand immobilization, but prior to analyte exposure, by treating the patterned surface with a simple salt regeneration solution.  相似文献   

2.
To control protein adsorption on surfaces, low-fouling polymer coatings such as poly(ethylene oxide) (PEG or PEO) and polysaccharides are used. Their ability to resist protein adsorption is related to the layer structure, hence the immobilization mode. A polymer array technology was developed to study the structural diversity of carboxymethyl dextran (CMD) layers, whose immobilization conditions were varied. CMD arrays were analyzed by X-ray photoelectron spectroscopy (XPS) and by atomic force microscopy (AFM) colloidal probe force measurements. Serum protein adsorption was studied directly on the CMD arrays using surface plasmon resonance (SPR) microscopy. Physicochemical characterization revealed that pinning density regulates surface coverage and the amount of adsorbed molecules, and that salt concentration influences the surface structure of the charged polymer, forming extended or short layers. Protein adsorption experiments from serum showed that repulsive CMD layers are dense, with extended flexible chains. The present study underlines the usefulness of polymer arrays to study structural diversity of thin graft layers and to relate their physicochemical properties to their resistance to nonspecific protein adsorption.  相似文献   

3.
Unlike micelles of straight hydrocarbon chain-surfactants, isoprenoid surfactants, CH3 [CH(CH3)CH2CH2CH2]3 CH(CH3)CH2–R (R=CH2N+ (CH3)3 Br, CH2OPO3H Na+, CH2OSO 3 Na+, CO 2 Na+), gave large globular and cellular assemblies in water which could be observed directly by transmission electron microscopy; critical micelle concentration of 0.31.4×10–3 M at 20°C, aggregation number of 215×104, and diameter of 200–2000 Å. A basic structure of the assemblies was a thin layer with a thickness (about 30 Å) which was close to the molecular length of the surfactants. The assemblies were decomposed during gel column chromatography; viz., they were not as stable as the liposomes of lecithins. The morphology was discussed in conjunction with a steric effect of the isoprenoid chain.  相似文献   

4.
The barriers to rotation about the pivot bonds in with n = 8 or 10 and R = CH2C6H5, CH2COOH, CH2COOCH3 or CH(CH3)2 were studied. ΔG values were found to be > 24 kcal. mol?1. The solvent, the temperature, and the concentration dependence of the double magnetically non-equivalent methylenic protons and methyl groups were studied.  相似文献   

5.
We have constructed a new electrochemical biosensor by immobilization of hemoglobin (Hb) and ZnWO4 nanorods in a thin film of chitosan (CTS) on the surface of carbon ionic liquid electrode. UV–vis and FT-IR spectra reveal that Hb remains in its native conformation in the film. The modified electrode was characterized by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. A pair of well-defined redox peaks appears which indicates direct electron transfer from the electrode. The presence of CTS also warrants biocompatibility. The electron transfer coefficient and the apparent heterogeneous electron transfer rate constant were calculated to be 0.35 and 0.757 s?1, respectively. The modified electrode displays good electrocatalytic activity for the reduction of trichloroacetic acid with the detection limit of 0.613 mmol L?1 (3σ). The results extend the protein electrochemistry based on the use of ZnWO4 nanorods.
Figure
A ZnWO4 nanorods and hemoglobin nanocomposite material modified carbon ionic liquid electrode was used as the platform for the construction of an electrochemical hemoglobin biosensor.  相似文献   

6.
Solubility of naphthalene in water was measured at 25°C and pressures up to 200 MPa. The solubility decreased with increasing pressure. From the pressure coefficient of the solubility, the volume change V accompanying the dissolution was estimated as 13.8±0.4 cm 3 -mol –1 . Further we estimated the volume change V CH accompanying hydrophobic hydration as –0.1±0.6 cm 3 -mol –1 using the V value, the molar volume of crystalline naphthalene, and the partial molar volume of naphthalene in n-heptane. This V CH is much larger (i.e., less negative) than that for hydrophobic hydration of alkyl-chain compounds and suggests that the hydration structure of naphthalene differs from that of alkyl-chain compounds.  相似文献   

7.
Three new [C2H6O]+˙ ions have been generated in the gas phase by appropriate dissociative ionizations and characterized by means of their metastable and collisionally induced fragmentations. The heats of formation, ΔHf0, of the two ions which were assigned the structures [CH3O(H)CH2]+˙ and [CH3CHOH2]+˙ could not be measured. The third isomer, to which the structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} = \mathop {\rm C}\limits^{\rm .} {\rm H} \cdot \cdot \cdot \mathop {\rm H}\limits^ + \cdot \cdot \cdot {\rm OH}_{\rm 2} $\end{document} is tentatively assigned, was measured to have ΔHf0 = 732±5 kJ mol?1, making it the [C2H6O]+˙ isomer of lowest experimental heat of formation. It was found that the exothermic ion–radical recombinations [CH2OH]++CH3˙→[CH3O(H)CH2]+˙ and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm + } {\rm HOH + H}^{\rm .} $\end{document}→[CH3CHOH2]+˙ have large energy barriers, 1.4 and ?0.9 eV, respectively, whereas the recombinations yielding [CH3CH2OH]+˙ have little or none.  相似文献   

8.
Synergic solvent extraction of Pr(III), Ho(III) and Er(III) was carried out at pH3.5 with a mixture of 2-thenoyltrifluoroacetone (HTTA) and tribenzylamine (TBA) from perchlorate media, having ionic strength 0.1M(H+, ClO 4 ). The stoichiometmric composition of all three synergic adducts was established to be Pr(TTA)3·3TBA, Ho(TTA)3·3TBA and Er(TTA)3·3TBA. The formation constants KTTA and Ksyn and stability constant ±syn were also computed and found to be in the order ErHo>Pr. The effect of various anions on the extraction has also been studied.  相似文献   

9.
The potential energy surfaces of the (CH3)nH3?n M+ ions, where n = 1, 2; M = Si, Ge, were scanned using the B3LYP method with 6–31G* and aug-cc-pVDZ basis sets. The major attention was given to isomeric species having the form of complexes of the HM+ and CH3M+ ions with hydrogen, methane, and ethane molecules. These species were characterized previously neither by experimental nor by theoretical methods. It was found that these species become more stable in going from Si to Ge; the complex [CH3Ge+CH4] is the second isomer in the energy after (CH3)2HGe+. However, the heights of the activation barriers to formation of these complexes from the most stable isomer, though decreasing in going from Si to Ge, remain relatively high and, what is particularly important, somewhat exceed the activation barrier to formation of the complex [H3Ge+·C2H4].  相似文献   

10.
[Ag2(CH3CH2C(CH3)2COO)2] (1), [Ag2(CH3CH2C(CH3)2COO)2(PMe3)2] (2) and [Ag2(CH3CH2C(CH3)2COO)2(PEt3)2] (3) were prepared and characterized by MS-EI; 1H, 13C, 31P NMR, variable temperature IR (VT-IR) spectroscopy and thermal analysis. MS and VT-IR data analysis suggests bidentate bridging carboxylates and monodentately bonded phosphines in the solid phase. The same methods used for gas phase analysis of 1–2 proved [(CH3CH2C(CH3)2COO)Ag2]+ as the main ion, which could be transported in the gas phase during the CVD process. In the case of 3, similar intensity to the latter ion revealed [Ag{P(C2H5)}]+ and it is responsible for the CVD performance of 3. Thermal analysis results revealed that decomposition of 1–3 proceed in one endothermic process, with metallic silver formation between 197 and 220 °C. In the case of 1, VT-IR studies of the gaseous decomposition products demonstrate the presence of ester molecules and CO2, whereas for 2 the main gaseous product appeared to be acid anhydride. Therefore, 2 was not used as a silver CVD precursor. Metallic layers were produced from 3 in hot-wall CVD experiments, (between 200 and 280 °C), under a total reactor pressure of 2.0 mbar, using argon as a carrier gas. Thin films deposited on Si(1 1 1) substrate were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Silver films obtained at moderate temperature (220–250 °C) revealed a thickness below 50 nm, and were whitish colored and slightly matt.  相似文献   

11.
Simulation of fragments of potential energy surface for systems CH4 + CBr 3 + , CH4 + CBr 3 + AlBr 4 ? , CH4 + CCl 3 + AlCl 4 ? , and CH4 + CCl 3 + Al2Cl 7 ? was performed by DFT-B3LYP and DFT-PBE methods. The important role of nucleophilic assistance in methane halogenation by these superelectrophiles was confirmed. These reactions occur with a synchronous hydride transfer from methane to the electrophile within the cyclic transition states in linear C-H-C fragment of the rings and a generation of a C-Hlg bond between the carbon atom of the arising methyl group and the halogen atom of the electrophile. The nucleophilic assistance from the unshared electron pair of this halogen atom provides the lowering of the potential barriers to methane halogenation by complexes CBr 3 + AlBr 4 ? , CCl 3 + AlCl 4 ? , and CCl 3 + Al2Cl 7 ? to the values of the order of 20 kcal mol?1. These essential features of the mechanism of methane halogenation are independent of the halogen nature and are retained on going from the model electrophiles to the real ones.  相似文献   

12.
Photoionization mass spectrometry was used to investigate the dynamics of ion-neutral complex-mediated dissociations of the n-pentane ion (1). Reinterpretation of previous data demonstrates that a fraction of ions 1 isomerizes to the 2-methylbutane ion (2) through the complex CH3CH+CH 3 · CH2CH3 (3), but not through CH3CH+CH2CH 3 · CH3 (4). The appearance energy for C3Hin 7 + formation from 1 is 66 kJ mol?1 below that expected for the formation of n-C3H 7 + and just above that expected for formation of i-C3H 7 + . This demonstrates that the H shift that isomerizes C3H 7 + is synchronized with bond cleavage at the threshold for dissociation to that product. It is suggested that ions that contain n-alkyl chains generally dissociate directly to more stable rearranged carbenium ions. Ethane elimination from 3 is estimated to be about seven times more frequent than is C-C bond formation between the partners in that complex to form 2, which demonstrates a substantial preference in 3 for H abstraction over C-C bond formation. In 1 → CH3CH+CH2CH3 + CH3 by direct cleavage of the C1–C2 bond, the fragments part rapidly enough to prevent any reaction between them. However, 1 → 2 → 4 → C4H 8 + + CH4 occurs in this same energy range. Thus some of the potential energy made available by the isomerization of n-C4H9 in 1 is specifically channeled into the coordinate for dissociation. In contrast, analogous formation of 3 by 1 → 3 is predominantly followed by reaction between the electrostatically bound partners.  相似文献   

13.
Man Xi  Baoyan Zhang 《中国化学》2015,33(2):253-260
A tri‐quaternary ammonium salt cationic surfactant was synthesized. Its structure was confirmed by using Fourier‐transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, and X‐ray photoelectron spectroscopy analyses. Three model surfaces, including Au‐CH3, Au‐OH and Au‐COOH, were fabricated. Adsorptions of surfactant on the three model surfaces and subsequent plasma proteins adsorption were investigated by quartz crystal microbalance with dissipation (QCM‐D). The mass of surfactant on the Au‐COOH surface was the largest, followed by that on the Au‐CH3 surface, and that on the Au‐OH surface. These results suggested that the main driving force of surfactant immobilization was electrostatic interaction followed by hydrophobic interaction. Based on the results obtained, we concluded that the protein mass adsorbed on Au‐CH3‐ S , Au‐OH‐ S , and Au‐COOH‐ S surfaces depended on the protein size and orientation. The mass and thickness of S on the Au‐COOH surface is the largest and the protein adsorption capacity of Au‐COOH‐ S surface is inferior to that of Au‐CH3‐ S . The Au‐COOH‐ S surface could inhibit lysozyme adsorption, maintain the adsorption balance of bovine serum albumin, and induce fibrinogen‐binding protein adsorption.  相似文献   

14.
Photoionization was used to characterize the energy dependence of C3H 7 + , C3H 6 + , CH3OH 2 + and CH2=OH+ formation from (CH3)2)CHCH2OH+? (1) and CH3CH2CH2CH2OH+? (2). Decomposition patterns of labeled ions demonstrate that close to threshold these products are primarily formed through [CH 3 + CHCH3 ?CH2OH] (bd3) from 1 and through [CH3CH2CH2 ?CH2=OH+] (9) from 2. The onset energies for forming the above products from 1 are spread over 85 kJ mol?1, and are all near thermochemical threshold. The corresponding onsets from 2 are in a 19 kJ mol?1 range, and all except that of CH2=OH+ are well above their thermochemical thresholds. Each decomposition of 3 occurs over a broad energy range (> 214 kJ mol?1), This demonstrates that ion-permanent dipole complexes can be significant intermediates over a much wider energy range than ion-induced dipole complexes can be. H-exchange between partners in the complexes appears to be much faster than exchange by conventional interconversions of the alcohol molecular ions with their distonic isomers. The onsets for water elimination from 1 and 2 are below the onsets for the complex-mediated processes, demonstrating that the latter are not necessarily the lowest energy decompositions of a given ion when the neutral partner in the complex is polar.  相似文献   

15.
The study of the energetics of the accepted intradimer diamond growth mechanism over (100) diamond surface is presented. The calculations were made in a density functional approach with the DGauss code using a DZVP2 basis set and a BLYP interchange and correlation potential. A simple 9-carbon cluster modeling the (100) diamond surface was used; its validity is discussed in relation with other calculations that used larger model clusters. The mechanism, presented in six steps, is based in the Harris and Garrison's work that considers the methyl radical as the main growth precursor agent and the breaking of the dimer surface bond with the corresponding methylene radical formation as a prior step to the formation of a CH2-bridge structure, which is a feasible step; in contrast to these molecular dynamics results, Huang and Frenklach, using semiempirical methods, consider the breaking of the dimer surface bond and the formation of a CH2-bridge structure as one step and this step as the energetically determinant of the mechanism. They also found an activation energy barrier for the interaction between a radical surface center with a H and CH3. The present work tries to discern between these two ideas by calculating the activation barriers and the reaction energies for each step of the Harris and Garrison's mechanism in a density functional approach and comparing them to the results of Huang and Frenklach. The energy calculations point toward the scission of the dimer bond (step 4) as the determinant step; this step is endothermic, with an energy barrier of 50.43 kcal-mol–1. On the other hand, the formation of the CH2-bridge structure (step 5) is a feasible step with an energy barrier of 13.57 kcal-mol–1. The adsorption of CH3 (step 2) and H (step 6) species over radical surface sites did not involve any energy barriers, as it would be hoped. These steps were strongly exothermic and are close to the thermodynamic values for C—C and C—H bond energies. The removal of methylic hydrogen (step 3) did not show any problem because the activation barrier is only 3.68 kcal-mol–1 less than the removal of a surface hydrogen (step 1), which has an energy barrier of 19.59 kcal-mol–1. All steps, except number 4, were exothermic.  相似文献   

16.
Ab initio molecular orbital calculations have been carried out for 17 possible isomeric [C3H7O]+ structures. Optimized geometries have been obtained with a split-valence basis set and improved relative energies determined with polarization basis sets and with incorporation of electron correlation. The results agree well with available experimental data. In particular, (CH3)2COH+, CH3CH2CHOH+, CH3CHOCH3+, CH3CH2OCH2+, and have been confirmed as low-energy isomers. Six additional structures appear to be energetically accessible and to offer a reasonable prospect for experimental observation. These are CH2CHCH2OH2+, CH2C(CH3)OH2+, CH3CHCHOH2+, CH2CHOHCH3+, and .  相似文献   

17.
Synergic extraction of Ni/II/ at pH 1 to 10 was studied using a mixture of 2-thenoyltrifluoroacetone /HTTA/ and tribenzylamine /TBA/ in chloroform. The synergist TBA enhances the extraction of Ni/II/ by an order of 5 from pH 3 to 5 having ionic strength 0.1M /H+, ClO 4 /. The synergic adduct was found to be Ni/TTA/2.2TBA. The equilibrium constants K2,0 and K2,2 and stability constant 2,2 have been ascertained radiometrically. The influence of various cations and anions on the extraction of Ni/II/ has been examined under optimal conditions. Back extraction of the adduct species in different acids of varying concentrations has been studied.  相似文献   

18.
Ab initio calculations at the CCSD(T)/6‐311++G(2d,p)//B3LYP/6‐311++G(d,p) level of theory have been carried out for three prototypical rearrangement processes of organosilicon anion systems. The first two are reactions of enolate ions which involve oxygen–silicon bond formation via three‐ and four‐membered states, respectively. The overall reactions are: The ΔG (reaction) values for the two processes are +175 and +51 kJ mol?1, with maximum barriers (to the highest transition state) of +55 and +159 kJ mol?1, respectively. The third studied process is the following: (CH3O)C(?CH2)Si(CH3)2CH → (CH3)2(C2H5)Si? + CH2CO, a process involving an SNi reaction between ‐CH and CH3O‐ followed by silicon–carbon bond cleavage. The reaction is favourable [ΔG(reaction) = ?39 kJ mol?1] with the barrier for the SNi process being 175 kJ mol?1. The previous experimental and the current theoretical data are complementary and in agreement. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Two series of neopentylbenzenes with one or two substituents on the benzyl group have been synthesized. In one series the substituents were H, F, Cl, Br, I, OCH3, OCOCH3, OSi(CH3)3 CH3 and CH2CH3, and in the other OH and R [R ? H, CH3, CH2CH3, (CH2)3CH3, CH(CH3)2 and C(CH3)3]. Barriers to internal C? C and C? C rotation have been estimated by 13C NMR band shape methods. Estimated barriers were found to increase as the size of the substituent increases. The results are discussed in terms of possible initial and transition states, based on summations of results from molecular mechanics (MM) calculations, using the Allinger MMP1 program. Barriers estimated experimentally are compared with results from other systems found in the literature.  相似文献   

20.
Li Chongying 《Chromatographia》1992,34(3-4):182-184
Summary If any residual (free) silanol groups remain at the surface of silica gel after bonding treatment, they may affect the retention of solutes since the dissociated groups (SiO) will attract cations. The silanol group effect on the retention of cationic solutes will increase with increasing pH of the mobile phase but the effect will decrease with increasing hydrophobic-ion concentration at the C18 surface because such ions can mask the residual silanol groups. A method for the separation of metal complexes with 2-(5-bromo-2-pyridylazo)-diethylaminephenol (5-Br-PADAP) has been developed. The hydrophobic ion in the MeOH/H2O mobile phase was tetrabutylammonium (TBA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号