首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The polymerization of methyl methacrylate MMA catalyzed by [Mo(CO)4L2] [L2 = diphenylphosphinomethane (dppm), diphenylphosphinoethane (dppe) or diphenylphosphinopropane (dppp)] has been studied. The activity of these single‐component catalysts depends on the length of the (CH2)n bridge of diphosphine ligand. Thus, the dppm derivative displays higher activity than dppe or dppp ligands. These complexes, as free radical initiators, afforded the methyl methacrylate polymerization in chlorinated solvents. The mechanism of the polymerization was discussed and a radical mechanism was proposed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Reaction of RCCH (R  Ph, CO2Meor CO2Et) with trans-[M(N2)2(dppe)2] (M  Mo or W; dppe  Ph2PCH2CH2PPh2) or [Mo(dppm)3] (dppm  Ph2PCH2PPh2) gives the alkyne complexes [M(RCCH)2(diphos)2] (diphos  dppe, M  Mo, R = Ph; dihpos  dppm, M  Mo, R  Ph or CO2Me) and the alkynyl complexes trans-[M(cCR)2(dppe)2], [MH2(CCR)2 (dppe)2] (M  Mo or W. R  Ph, CO2Me or CO2Et) and cis-[WH(CCCO2Me)(dppe)2]: the X-ray structure of trans-[Mo(CCPh)2(dppe)2] is reported.  相似文献   

3.
The preparation of the bidentate ligand 2, 11-bis(diphenylarsinomethyl)benzo-[c]-phenanthrene ( 1 ) is described. This ligand reacts with appropriate substrates to give mononuclear square planar complexes of type [MX2( 1 )] (M = Pd, Pt; X = Cl, Br, I) and [M′Cl(CO)( 1 )] (M′ = Rh, Ir) in which ligand 1 spans trans-positions. This is confirmed by the crystal structure of [PtCl2( 1 )]. 1H-NMR. spectra of the complexes are discussed and compared with those of model compounds trans-[MCl2( 12 )2] (M = Pd, Pt) and [M'Cl(CO)( 12 )2] (M′ = Rh, Ir; 12 = AsBzPh2).  相似文献   

4.
The complexes [MBr(π-allyl)(CO)2(bipy)] (M = Mo, W, bipy = 2,2′-bipyridine) react with alkylxanthates (MIRxant), and N-alkyldithiocarbamates (MIRHdtc) (MI = Na or K), yielding complexes of general formula [M(S,S)- (π-allyl)(CO)2(bipy)] (M = Mo, (S,S) = Rxant (R = Me, Et, t-Bu, Bz), RHdtc (R = Me, Et); M = W, (S,S) = Extant). A monodentate coordentate coordination of the (S,S) ligand was deduced from spectral data. The reaction of [MoBr(π-allyl)(CO)2(bipy)] with MeHdtc and Mexant gives the same complexes whether pyridine is present or not. The complexes [Mo(S,S)(π-allyl)(CO)2(bipy)] ((S,S) = MeHdtc, Mexant) do not react with an excess of (S,S) ligand and pyridine.No reaction products were isolated from reaction of [MoBr(π-allyl)(CO)2(dppe)] with xanthates or N-alkyldithiocarbamates.  相似文献   

5.
Reactions of SnCl2 with the complexes cis‐[PtCl2(P2)] (P2=dppf (1,1′‐bis(diphenylphosphino)ferrocene), dppp (1,3‐bis(diphenylphosphino)propane=1,1′‐(propane‐1,3‐diyl)bis[1,1‐diphenylphosphine]), dppb (1,4‐bis(diphenylphosphino)butane=1,1′‐(butane‐1,4‐diyl)bis[1,1‐diphenylphosphine]), and dpppe (1,5‐bis(diphenylphosphino)pentane=1,1′‐(pentane‐1,5‐diyl)bis[1,1‐diphenylphosphine])) resulted in the insertion of SnCl2 into the Pt? Cl bond to afford the cis‐[PtCl(SnCl3)(P2)] complexes. However, the reaction of the complexes cis‐[PtCl2(P2)] (P2=dppf, dppm (bis(diphenylphosphino)methane=1,1′‐methylenebis[1,1‐diphenylphosphine]), dppe (1,2‐bis(diphenylphosphino)ethane=1,1′‐(ethane‐1,2‐diyl)bis[1,1‐diphenylphosphine]), dppp, dppb, and dpppe; P=Ph3P and (MeO)3P) with SnX2 (X=Br or I) resulted in the halogen exchange to yield the complexes [PtX2(P2)]. In contrast, treatment of cis‐[PtBr2(dppm)] with SnBr2 resulted in the insertion of SnBr2 into the Pt? Br bond to form cis‐[Pt(SnBr3)2(dppm)], and this product was in equilibrium with the starting complex cis‐[PtBr2(dppm)]. Moreover, the reaction of cis‐[PtCl2(dppb)] with a mixture SnCl2/SnI2 in a 2 : 1 mol ratio resulted in the formation of cis‐[PtI2(dppb)] as a consequence of the selective halogen‐exchange reaction. 31P‐NMR Data for all complexes are reported, and a correlation between the chemical shifts and the coupling constants was established for mono‐ and bis(trichlorostannyl)platinum complexes. The effect of the alkane chain length of the ligand and SnII halide is described.  相似文献   

6.
Reactions of RuCl2(L-L)2 (L-L = dppm or dppe) with CO and silver salts of non coordinating anions produce [Ru(CO)2(L-L)2]X2 which, once formed, are stable to CO loss. However, the fluxional five coordinate intermediates [Ru(Cl) (L-L)2]X, which in some cases may contain ion pairs, are sufficiently electrophilic to abstract fluoride ion from [BF4]? or to coordinate other ions in solution such as [O2PF2]? formed by hydrolysis of [PF6]?. A series of complexes of general formula [Ru(CO)2 (dppm)2AgY]X2 may also be isolated and are shown to contain a dppm ligand bridging ruthenium and silver, the bond between which is reversibly cleaved by nitromethane on the nmr timescale.  相似文献   

7.
The reactions of PdCI2(L-L) [L-L = Ph2PCH2PPh2(dppm), Ph2PCH2CH2PPh2(dppe) and Ph2PCH2CH2CH2PPh2(dppp)] with equivalent amount of (Ph2P(S)NHP(S)Ph2)(dppaS2) gave the complexes [Pd(L-L)(dppaS2-H)]ClO4 [L-L = dppm (1), dppe (2), dppp (3)]. The different synthetic route was used for complex 2 by using of Pd(dppe)Cl2 and K[N(PSPh2)2] as starting materials (2a). All of these complexes have been characterized 31P{1H} NMR, IR and elemental analyses. The complexes 2, 2a and 3 were crystallographically characterized. The coordination geometry around the Pd atoms in these complexes distorted square planar. Six membered dppaS2-H rings are twist boat conformations in three complexes.  相似文献   

8.
The conformational isomers endo‐ and exo‐[Mo{η3‐C3H4(CH3)}(η2‐pyS)(CO)(η2‐diphos)] (diphos: dppm = {bis(diphenylphosphino)methane}, 2 ; dppe = {1,2‐bis(diphenylphosphino)ethane}, 3 ) are prepared by reacting the double‐bridged pyridine‐2‐thionate (pyS) complex [Mo{η3‐C3H4(CH3)}(CO)2]212:μ‐pyS)2, 1 with diphos in refluxing acetonitrile. Stereoselectivity of the methallyl, C3H4(CH3), ligand improves the formation of the exo‐conformation of 2 and 3 . Orientations and spectroscopy of these complexes are discussed.  相似文献   

9.
Reaction of the binuclear μ‐carbamoyl complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(HNMe2)] ( 1 ) in toluene with the chelating ligands Ph2PCH2PPh2 (dppm) and Ph2PCH2CH2PPh2 (dppe) gives different results. With dppm only the complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(dppm)] ( 3 ) with a dangling ligand is obtained under replacement of amine, whereas with dppe depending on the reaction conditions up to three compounds are found. A 1 : 1 mixture of the educts generates the related complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(dppe)] ( 4 ) together with the tetranuclear complex [{(CO)3Fe(μ‐Me2NCO)2Fe(CO)2}2(dppe)] (5 ). 4 slowly converts into [(CO)3Fe(μ‐Me2NCO)2Fe(CO)(dppe)] ( 6 ) with dppe acting as a chelating ligand. 6 is the first compound in this series in which one of the five CO groups is replaced by another donor. A 2 : 1 molar ratio of 1 and dppe quantitatively produces 5 . Addition of CO to a solution of 6 proceeds under slow reversible conversion of the complex into 4 . The compounds were characterized by the usual spectroscopic methods; 3 , 5 and 6 were also studied by X‐ray diffraction analyses.  相似文献   

10.
The reactions of [MCl2(PP)] and [MCl2(PR3)2)] with 1-mercapto-2-phenyl-o-carborane/NaSeCboPh and 1,2-dimercapto-o-carborane yield mononuclear complexes of composition, [M(SCboPh)2(PP)], [M(SeCboPh)2(PP)] (M = Pd or Pt; PP = dppm (bis(diphenylphosphino)methane), dppe (1,2-bis(diphenylphosphino)ethane) or dppp (1,3-bis(diphenylphosphino)propane)) and [M(SCboS)(PR3)2] (2PR3 = dppm, dppe, 2PEt3, 2PMe2Ph, 2PMePh2 or 2PPh3). These complexes have been characterized by elemental analysis and NMR (1H, 31P, 77Se and 195Pt) spectroscopy. The 1J(Pt–P) values and 195Pt NMR chemical shifts are influenced by the nature of phosphine as well as thiolate ligand. Molecular structures of [Pt(SCboPh)2(dppm)], [Pt(SeCboPh)2(dppm)], [Pt(SCboS)(PMe2Ph)2] and [Pt(SCboS)(PMePh2)2] have been established by single crystal X-ray structural analyses. The platinum atom in all these complexes acquires a distorted square planar configuration defined by two cis-bound phosphine ligands and two chalcogenolate groups. The carborane rings are mutually anti in [Pt(SCboPh)2(dppm)] and [Pt(SeCboPh)2(dppm)].  相似文献   

11.
The reactions of [MCl2(PP)] and [MCl2(PR3)2)] with 1-mercapto-2-phenyl-o-carborane/NaSeCboPh and 1,2-dimercapto-o-carborane yield mononuclear complexes of composition, [M(SCboPh)2(PP)], [M(SeCboPh)2(PP)] (M = Pd or Pt; PP = dppm (bis(diphenylphosphino)methane), dppe (1,2-bis(diphenylphosphino)ethane) or dppp (1,3-bis(diphenylphosphino)propane)) and [M(SCboS)(PR3)2] (2PR3 = dppm, dppe, 2PEt3, 2PMe2Ph, 2PMePh2 or 2PPh3). These complexes have been characterized by elemental analysis and NMR (1H, 31P, 77Se and 195Pt) spectroscopy. The 1J(Pt–P) values and 195Pt NMR chemical shifts are influenced by the nature of phosphine as well as thiolate ligand. Molecular structures of [Pt(SCboPh)2(dppm)], [Pt(SeCboPh)2(dppm)], [Pt(SCboS)(PMe2Ph)2] and [Pt(SCboS)(PMePh2)2] have been established by single crystal X-ray structural analyses. The platinum atom in all these complexes acquires a distorted square planar configuration defined by two cis-bound phosphine ligands and two chalcogenolate groups. The carborane rings are mutually anti in [Pt(SCboPh)2(dppm)] and [Pt(SeCboPh)2(dppm)].  相似文献   

12.
Two ligands 1‐diphenylphosphinopyrene (1‐PyP) ( L 1 ), 1,6‐bis(diphenylphosphino)‐pyrene (1,6‐PyP) ( L 2 ) and their cyclometalated complexes [Pt(dppm)(1‐PyP‐H)]+ ( 1 ), [Pt2(dppm)2(1,6‐PyP‐H2)]2+ (dppm = bis(diphenylphosphino)methane ( 2 ), and [Pd(dppe)(1‐PyP‐H)+ (dppe = bis(diphenylphosphino)ethane) ( 3 ) are investigated theoretically to explore their electronic structures and spectroscopic properties. The ground‐ and excited‐state structures are optimized by the density functional theory (DFT) and single‐excitation configuration interaction method, respectively. At the time‐dependent DFT (TDDFT) and B3LYP level, the absorption and emission spectra in solution are obtained. As revealed from the calculations, the lowest‐energy absorptions of 1 and 3 are attributed to the mixing ligand‐to‐metal charge transfer (CT)/intraligand (IL)/ligand‐to‐ligand CT transitions, while that of 2 is attributed to the IL transition. The lowest‐energy phosphorescent emissions of the cyclometalated complexes are attributed to coming from the 3ILCT transitions. With the increase of the spin‐orbit coupling effect, the phosphorescence intensities and the emissions wavelength are correspondingly increased. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

13.
The complexes [M(CO)42-H2L)] [M?=?Cr; 1, Mo; 2, W; 3] have been synthesized by photochemical reactions of VIB metal carbonyls [M(CO)6] [M?=?Cr,?Mo,?W] with N,N′-bis(salicylidene)-1,2-bis-(o-aminophenoxy)ethane (H2L) in THF and characterized by elemental analyses, FTIR, 1H?NMR and mass spectra. The H2L ligand is coordinated to the central metal as a bidentate ligand via the central azomethine nitrogen atoms in 13.  相似文献   

14.
By reacting [Pd( )(μ-Cl)]2 with AgClO4 in NCMe, the corresponding cationic complexes [Pd( )(NCMe)2]ClO4 ( = phenylazophenyl-C2,N1; dimethylbenzylamine-C2,N; 8-methylquinoline-C8,N) can be obtained. Solutions containing the cations [Pd( )(S)2]+ are obtained when the reaction is carried out in tetrahydrofuran or acetone (S). The treatment of these solutions with bidentate ligands (L—L) (Ph2PCH2PPh2,Ph2PNHPPh2 or Ph2PCH2PPh2CHC(O)Ph) gives the mononuclear [Pd( )(L3l)]ClO4 complexes, with L3l acting as a chelate ligand. On the other hand [Pd( (μ-Cl)]2 reacts with L3l (Ph2PCH2PPh2, Ph2PNHPPh2) yielding [Pd( )Cl(L3l)] with L3l acting as monodentate. The reactions between [Pd( )(NCMe)2]ClO4 and 2,2′-bipyrimidyl give rise to the formation of the mononuclear [Pd( ) (bipym)]ClO4 or binuclear [Pd2( )2(μ-bipym)](ClO4)2, [( )Pd(μ-bipym)Pd( )](ClO4)2 derivatives. Finally [Pd( )Cldppm] (dppm = Ph2PCH2PPh2) react with NaH producing the neutral complexes [Pd( )(ddppm)] (ddppm = Ph2PCHPPh2) which by reaction with HCl lead again to the starting materials [Pd( )Cl(dppm)].  相似文献   

15.
The Reactivity of Dinuclear Platina‐β‐diketones with Phosphines: Diacetylplatinum(II) Complexes and Mononuclear Platina‐β‐diketones Addition of mono‐ and bidentate phosphines or of AsPh3 to the platina‐β‐diketone [Pt2{(COMe)2H}2(μ‐Cl)2] ( 1 ) followed by the addition of NaOMe at ?70 °C resulted in the formation of diacetyl platinum(II) complexes cis‐[Pt(COMe)2L2] (L = PPh3, 2a ; P(4‐FC6H4)3, 2b ; PPh2(4‐py), 2c ; PMePh2, 2d ; AsPh3, 2d ) and [Pt(COMe)2(L??L)] (L??L = dppe, 3b ; dppp, 3c ), respectively. The analogous reaction with dppm afforded the dinuclear complex cis‐[{Pt(COMe)2}2(μ‐dppm)2] ( 4 ) that reacted in boiling acetone yielding [Pt(COMe)2(dppm)] ( 3a ). The reactions 1 → 2 / 3 were found to proceed via thermally highly unstable cationic mononuclear platina‐β‐diketone intermediates [Pt{(COMe)2H}L2]+ and [Pt{(COMe)2H}(L??L)]+, respectively, that could be isolated as chlorides for L??L = dppe ( 5a ) and dppp ( 5b ). The reversibility of the deprotonation of type 5 complexes with NaOMe yielding type 3 complexes was shown by the protonation of the diacetyl complex 3b with HBF4 yielding the platina‐β‐diketone [Pt{(COMe)2H}(dppe)](BF4) ( 5c ). All compounds were fully characterized by means of NMR and IR spectroscopies, and microanalyses. X‐ray diffraction analysis was performed for the complex cis‐[Pt(COMe)2(PPh3)2]·H2O·CHCl3 ( 2a ·H2O·CHCl3).  相似文献   

16.
Interaction of the tripodal ligand N-[(2-pyridyl)methyl]-2,2′-dipyridylamine (pmdpa) with [Mo(CO)6] under reduced pressure gave two complexes [Mo(CO)4(pmdpa)] and [Mo(CO)2(pmdpa)2], depending on the mole ratio and reaction time. The i.r. spectra of the two complexes gave patterns in the metal carbonyl region confirming the proposed structures. Reaction of [Ru3(CO)12] with pmdpa in benzene gave the mononuclear complex [Ru(CO)3(pmdpa)]. The electronic absorption spectra of the complexes exhibited visible transitions due to metal-to-ligand charge transfers. Electrochemical investigation of the complexes showed some irreversible and quasi-reversible redox reactions due tautomeric interconversions through electron transfer.  相似文献   

17.
Reaction of [Mo(CO)4(diene)] with 4,4′-bipyridine (44′B), trans-1,2-bis(2-pyridyl)ethene (2-bpe) and trans-1,2-bis(4-pyridyl)-ethene (4-bpe) gives polymeric [Mo(CO)4(44′B)]n, mononuclear cis-[Mo(CO)4(2-bpe)2] and binuclear [Mo(CO)4(4-bpe)]2 respectively. Reaction of the same ligands with [Mo(CO)4(bpy)] (bpy is 2,2′-bipyridine) produces the bridged binuclear complexes [{Mo(CO)3(bpy)}2(44′B)] and [{Mo(CO)3(bpy)}2(4-bpe)]. Products are characterised by microanalysis and spectroscopy (IR, 1H NMR, UV/vis). Reduction of [{Mo(CO)3(bpy)}2(44′B)] produces an anion in which the unpaired electron is localised on the chelating bpy ligand.  相似文献   

18.
Coordinatively Unsaturated Diiron Complexes: Synthesis and Crystal Structures of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] and [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] [Fe2(μ‐CO)(CO)6(μ‐H)(μ‐PtBu2)] ( 1 ) reacts spontaneously with dppm (dppm = Ph2PCH2PPh2) to give [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 2 c ). By thermolysis or photolysis, 2 c loses very easily one carbonyl ligand and yields the corresponding electronically and coordinatively unsaturated complex [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ). 3 exhibits a Fe–Fe double bond which could be confirmed by the addition of methylene to the corresponding dimetallacyclopropane [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). The reaction of 1 with dppe (Ph2PC2H4PPh2) affords [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppe)] ( 5 ). In contrast to the thermolysis of 2 c , yielding 3 , the heating of 5 in toluene leads rapidly to complete decomposition. The reaction of 1 with PPh3 yields [Fe2(CO)6(H)(μ‐PtBu2)(PPh3)] ( 6 a ), while with tBu2PH the compound [Fe2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 6 b ) is formed. The thermolysis of 6 b affords [Fe2(CO)5(μ‐PtBu2)2] and the degradation products [Fe(CO)3(tBu2PH)2] and [Fe(CO)4(tBu2PH)]. The molecular structures of 3 , 4 and 6 b were determined by X‐ray crystal structure analyses.  相似文献   

19.
Five new complexes, [M(CO)5(apmsh)] [M = Cr; (1), Mo; (2), W; (3)], [Re(CO)4Br(apmsh)] (4) and [Mn(CO)3(apmsh)] (5) have been synthesized by the photochemical reaction of metal carbonyls [M(CO)6] (M = Cr, Mo and W), [Re(CO)5Br], and [Mn(CO)3Cp] with 2-hydroxyacetophenone methanesulfonylhydrazone (apmsh). The complexes have been characterized by elemental analysis, mass spectrometry, f.t.-i.r. and 1H spectroscopy. Spectroscopic studies show that apmsh behaves as a monodentate ligand coordinating via the imine N donor atom in [M(CO)5(apmsh)] (1–4) and as a tridentate ligand in (5).  相似文献   

20.
Three new oxime‐based palladacycles, namely [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(dppm)]ClO4 ( 1 ), [Pd2{C,N‐C6H4{C(Me)?NOH}‐2}2(dppe)2(μ‐dppe)](ClO4)2 ( 2 ) and [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(dppmS2)]ClO4 ( 3 ), were synthesized by the reaction of dinuclear oxime complex [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(μ‐Cl)]2 with different diphosphine ligands (dppm, dppe and dppmS2). The synthesized complexes were characterized using Fourier transform infrared, 31P NMR, 1H NMR and 13C NMR spectroscopic methods and elemental analyses, and their molecular structures were elucidated using X‐ray crystallography. The structure of 2 is worthy of note as it is the first oxime palladacycle where there are both bridging (P–) and chelating (P^P) dppe ligands, giving rise to a dinuclear complex. The palladium atom is in a five‐coordinate, square pyramidal P3NC environment, while in 3 the palladium atom is in a distorted square planar environment, coordinated by the oxime ligand and a chelating (S^S) dppmS2 ligand. These complexes were employed as efficient catalysts for the Suzuki–Miyaura cross‐coupling reaction of several aryl bromides with phenylboronic acid. The in vitro cytotoxicity of the compounds was also evaluated against human tumour cell lines (HT29, A549 and HeLa) using the MTT assay method. The results indicate that the dinuclear complex 2 has greater catalytic and anticancer activity in comparison with the mononuclear complexes 1 and 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号