首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recent applications in CEC   总被引:2,自引:0,他引:2  
Huo Y  Kok WT 《Electrophoresis》2008,29(1):80-93
In this review, research papers on CEC are summarized that have been published between May 2005 and May 2007. Application-oriented research is discussed in which CEC is used in biochemical and pharmaceutical studies, in the analysis of food and natural products, and in industrial, environmental, and forensic analysis. Some trends and developments in separation science that may increase the applicability of the separation technique CEC are highlighted: 2-D separation systems and the application of nano- and microfluidic devices in separations.  相似文献   

2.
Eeltink S  Rozing GP  Kok WT 《Electrophoresis》2003,24(22-23):3935-3961
The most recent and important applications in capillary electrochromatography (CEC) are summarized, covering literature published since May 2001. A selection of new developments in stationary phases for CEC is highlighted, and enantiomeric separations and chiral stationary phases are discussed. Also, CEC applications of biological molecules, pharmaceuticals, and applications in the field of industrial and environmental analysis are summarized. For this review three modes of CEC were taken into account, i.e., packed-column CEC, CEC using monolith technology, and open-tubular CEC.  相似文献   

3.
This article reviews the most recent developments concerning the determination of antibiotics by CE and CEC. The most employed CE separation modes were CZE and MEKC although microemulsion electrokinetic capillary chromatoghraphy was also employed. For the first time, CE was coupled to MS that was applied as a specific and confirmatory detection technique for the analysis of antibiotics. The analytical characteristics of the developed methodologies as well as the different applications reported in the literature on this subject from June 2005 until May 2007 are included in this article. To give the most relevant information on this topic, the experimental conditions employed to achieve the analysis of antibiotics by CE and CEC are provided together with the main applications performed in the pharmaceutical, agrochemical, biological, food, and environmental fields, emphacizing sample preparation requirements needed in each case.  相似文献   

4.
This review surveys the accomplishments in the separation of peptides and proteins by capillary electrochromatography (CEC) over the last decade. A significant number of research articles have been published on this topic since the last review. Peptide and proteins separations have been carried out in all three formats of CEC, i.e., packed bed, continuous bed and open-tubular (OT) format. In addition to electrophoresis, different chromatographic modes have been successfully exploited with the most prevalent being reversed-phase mode followed by ion-exchange. Although many researchers continue to use model proteins and peptides primarily to evaluate the performance of novel stationary phases some researchers have also applied CEC to the analysis of real-life samples. The potential of CEC to yield complementary information and sometimes a superior separation with respect to established techniques, i.e., microbore HPLC and capillary electrophoresis has been demonstrated. Instrumental modifications in order to facilitate coupling of CEC to mass spectrometry have further upgraded the value of CEC for proteomic analysis. Capillaries are still the separation vehicle of choice for most researchers yet the microfluidic platform is gaining momentum, propelled particularly by its potential for multitasking, e.g., performing different chromatographic modes in series.  相似文献   

5.
A review is presented on the current state of the art and future trends in the development of sol-gel stationary phases for capillary electrochromatography (CEC). The design and synthesis of stationary phases with prescribed chromatographic and surface charge properties represent challenging tasks in contemporary CEC research. Further developments in CEC as a high-efficiency liquid-phase separation technique will greatly depend on new breakthroughs in the area of stationary phase development. The requirements imposed on CEC stationary phase performance are significantly more demanding compared with those for HPLC. The design of CEC stationary phase must take into consideration the structural characteristics that will provide not only the selective solute/stationary phase interactions leading to chromatographic separations but also the surface charge properties that determine the magnitude and direction of the electroosmotic flow responsible for the mobile phase movement through the CEC column. Therefore, the stationary phase technology in CEC presents a more complex problem than in conventional chromatographic techniques. Different approaches to stationary phase development have been reported in contemporary CEC literature. The sol-gel approach represents a promising direction in this important research. It is applicable to the preparation of CEC stationary phases in different formats: surface coatings, micro/submicro particles, and monolithic beds. Besides, in the sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. One remarkable advantage of the sol-gel approach is the mild thermal conditions under which the stationary phase synthesis can be carried out (typically at room temperature). It also provides an effective pathway to integrating the advantageous properties of organic and inorganic material systems, and thereby enhancing and fine-tuning chromatographic selectivity of the created hybrid organic-inorganic stationary phases. This review focuses on recent developments in the design, synthesis, characterization, properties, and applications of sol-gel stationary phases in CEC.  相似文献   

6.
This review summarizes applications of CEC for the analysis of proteins and peptides. This "hybrid" technique is useful for the analysis of a broad spectrum of proteins and peptides and is a complementary approach to liquid chromatographic and capillary electrophoretic analysis. All modes of CEC are described--granular packed columns, monolithic stationary phases as well as open-tubular CEC. Attention is also paid to pressurized CEC and the chip-based platform.  相似文献   

7.
Capillary electrochromatography (CEC) is an emerging technique that combines features of both micro-capillary high-performance liquid chromatography (microHPLC) and capillary electrophoresis (CE). This separation technique possesses high speed and the efficiency of an electro-driven system, while the selectivity and sample loadability compare to those of a packed capillary LC column. Since the separation mechanism is based on that of HPLC, the concept of isoeluotropic strength and selectivity of solvents as well as the on-column focusing techniques for sample introduction used in LC can be applied in CEC. This article examines some of these features of CEC in the context of our own experiences with the technique. More specifically, emphasis is placed on applications of CEC to the analysis of DNA adducts of polyaromatic hydrocarbons by coupling CEC to mass spectrometry. It is shown that, with proper selection of mixed organic modifiers in the mobile phase, i.e. ternary and quaternary mobile phases, complex DNA adduct mixtures derived from in vitro reactions can be separated isocratically with improved selectivity and much greater speed than by HPLC. Additionally, the speed of the analysis is further enhanced by employing a step gradient. Furthermore, CEC may be easily coupled to mass spectrometry such that the characterization of each isolated component from the mixtures is performed on-line with the separation. By using on-column focusing, the sample loadability onto a CEC column is improved.  相似文献   

8.
田耘  曹小敏  张琪  曾昭睿 《色谱》2009,27(6):737-744
超分子化学是一门研究分子间特定识别能力的新兴学科,超分子化合物所具有的主-客体识别能力为高选择性的色谱分离提供了广阔的发展前景。毛细管电色谱是近年来发展起来的一种高效、高选择性的微分离技术,电色谱固定相是该技术的核心部分,一直是研究的热点。本文综述了1998年以来环糊精、杯芳烃、冠醚以及大环多胺等4种超分子化合物用作毛细管电色谱固定相的研究进展情况。  相似文献   

9.
The feasibility of using capillary electrochromatography (CEC) as a high-efficiency reversed-phase separation technique has been demonstrated for the analysis of some pesticide formulation products. Some operating parameters of CEC analysis (organic modifier content, pH of the buffer, and sample diluent) were studied using commercially available capillaries packed with Hypersil (Phenomenex, Torrance, CA, U.S.A.) octadecylsilic (ODS) particles. It was found that the resolution decreases in linear fashion with the increase in percent acetonitrile in the sample diluent for neutral components if a combination of electrokinetic injection and pressure injection is used. Several practical applications of the CEC technique in the analysis of pesticide formulation products are described in detail. The results indicate that CEC, compared with HPLC, not only has higher efficiency, but is also practical, precise, and accurate in terms of simplicity, efficiency, recovery, and linearity.  相似文献   

10.
11.
This work describes initial investigations of strong anion-exchange (SAX) packing materials for capillary electrochromatography (CEC). The use of SAX phases in CEC is theoretically appealing for the analysis of negatively charged species. The reversed direction of the electroosmotic flow (EOF) generated by SAX phases (in comparison to reversed phases and strong cation-exchange phases) means that negative species can migrate with the EOF, not against it, hence the analysis times, of such species should be decreased and efficiencies improved. Duplex CEC columns (the standard for instruments using UV detection) consist of a packed and an unpacked section. Using common reversed-phase packing materials the direction of the EOF in both sections is co-linear, however when normal fused-silica capillaries are packed with SAX material the direction of the EOF in the two sections oppose one another. It has been shown, using conventional duplex CEC columns and fully packed CEC-MS columns that the opposing direction of EOF causes a massive degradation in column performance. Consequentially, it is demonstrated that if the EOF in the open section of the duplex SAX column can be controlled via pH or capillary derivatisation then good, reproducible CEC can be performed on anionic species using SAX packed CEC columns.  相似文献   

12.
王洪  顾峻岭 《分析化学》1998,26(11):1293-1297
通过流动相中电解质浓度对毛细管电色谱柱效能的流动相平均线速度的影响,研究了CEC中双电层叠加现象。提出选择合适电解质组成的浓度及在制备色谱柱过程中避免细小和破碎的固定相颗粒进入柱中,以有效地减小双电层叠加作用。  相似文献   

13.
During the past decades, research has been performed to enhance selectivity in CE by introducing different types of additives into the electrolyte. Research concerning this has taken many directions, especially during the last 5 years. A promising technique, which benefits from no packing or frits, is to use nanoparticles as the pseudostationary phase (PSP) in CEC. PSPs have the advantage of introducing a novel interaction phase for every analysis, which greatly simplify column exchange and circumvent contamination inherited from complex mixtures, e.g., biological samples. The field of nanoparticle-based PSPs used in CEC is covered in this review. The term CEC will be used consequently throughout this review, although some authors used the term EKC to categorize their work. Important requirements for the nanoparticles used and possible reasons for band broadening will be discussed. Applications with silica nanoparticles, polymer nanoparticles, molecularly imprinted polymer nanoparticles, gold nanoparticles, dendrimers, and polymeric surfactants as PSP will also be discussed.  相似文献   

14.
Summary Capillary electrochromatography (CEC) is classed as a hybrid technique between CE and HPLC and it combines the advantages of both these techniques. However, in some cases the disadvantages are also brought to light and some of these are difficult to resolve. For example the analysis of basic compounds using CEC. The problems of tailing peaks during HPLC analysis of basic compounds was resolved by end capping the residual silanol groups, but in CEC these are the groups that generate the electroosmotic flow. The analysis of basic compounds is crucial within the pharmaceutical industry where a high percentage of the drug actives are basic. Specially designed Continuous Beds stationary phases (CB) can mean that each application can have a specific stationary phase. In order to overcome the problem associated with the analysis of basic compounds using electrochromatography, we have designed a CB stationary phase with a positive charge, which could be operated using negative voltage. The resulting chromatography showed almost gaussian peaks for bases like nortriptyline which tail significantly using stationary phase typically used in CEC.  相似文献   

15.
毛细管电色谱和加压毛细管电色谱的进展与应用   总被引:2,自引:1,他引:1  
毛细管电色谱(CEC)以内含色谱固定相的毛细管为分离柱,以电渗流为驱动力,既可以分离带电物质也可以分离中性物质。它结合了毛细管电泳和高效液相色谱两者的优点,兼具高柱效、高分辨率、高选择性和高峰容量的特点,同时具有色谱和电泳的双重分离机理。然而,“纯粹”的电色谱在实际应用中有着天然的弱点,即: 在电流通过毛细管柱中的流动相时容易产生气泡(焦耳热作用),从而使电流中断和电渗流停止,毛细管柱必须被重新用流动相润湿后方能再次使用。加压毛细管电色谱(pCEC)将液相色谱中的压力流引入CEC系统中,不仅解决了气泡、干柱等问题,而且实现了定量阀进样和二元梯度洗脱。CEC和pCEC作为微分离领域的两种前沿技术,满足了当前复杂样品分析和分析仪器微型化的需求,近年来获得了广泛的关注。本文综述了这两种技术近来的发展,包括仪器、色谱固定相的发展,总结了其在生命科学、药物分析、食品安全以及环保样品分析等方面的应用进展,评述了各方法的特点,并展望了CEC和pCEC今后的发展和应用前景。  相似文献   

16.
Liu CY  Lin CC 《Electrophoresis》2004,25(23-24):3997-4007
Molecularly imprinted polymers (MIPs) are actively being developed as a practical tool for affinity chromatographic supports. From the viewpoint of separation science, capillary electrochromatography (CEC) might be one of the more promising chromatographic techniques to be used in combination with the MIPs. However, up to the present, very little MIP work has involved CEC. This review gives a full overview of MIP including current trends in MIP, methods for the characterization of MIP, and methods for the preparation of MIP with particular emphasis on application of the resulting materials in CEC. To prepare MIPs with selectivity predetermined for a particular substance or group of structural analogues is an important factor for the development of a new format of CEC. From the fundamental research with the batch method, a better knowledge of imprint formation and imprint recognition will be helpful for expanding the application area of the combination of MIPs with CEC.  相似文献   

17.
Capillary electrochromatography of peptides and proteins   总被引:1,自引:0,他引:1  
Li Y  Xiang R  Wilkins JA  Horváth C 《Electrophoresis》2004,25(14):2242-2256
This paper reviews recent progress in bioanalysis using capillary electrochromatography (CEC), especially in the field of separation of proteins and peptides. Fundamentals of CEC are briefly discussed. Since most of the recent developments on CEC have focused on column technology, i.e., design of new stationary phases and development of new column configurations, we describe here a variety of column architectures along with their advantages and disadvantages. Newly emerged column technologies in CEC for high speed and high efficiency separation are also discussed. Different analytical platforms of CEC such as pressure-assisted CEC or voltage-assisted micro- high-performance liquid chromatography (HPLC), CEC with different detection techniques, CEC on microchip platforms and multidimensional electrochromatography with their applications in peptide and protein analysis are presented.  相似文献   

18.
The successful coupling of capillary electrochromatography (CEC) to an ion trap mass spectrometer via a nanoelectrospray interface (nESI) is described. Using a conductively coated tip butted to the end of a CEC column, it was possible to obtain a stable spray without any sheath liquid being employed. Selected small peptides were separated with CEC columns (100 microm i.d./25 cm long) packed with 3 microm Hypersil C8 or C18 bonded silica particles with an eluent composed of ammonium acetate/acetonitrile. Peptide mixtures of desmopressin, peptide A, oxytocin, carbetocin and [Met(5)]-enkephalin were detected in the mid-attomole range, which is the lowest amount analyzed using CEC combined with MS detection. It was also observed that sensitivity can be compromised at higher separation voltages. We demonstrate that CEC/nESI-MS, at the current stage of development, represents one of the most sensitive systems for peptide analysis.  相似文献   

19.
Chen XJ  Zhao J  Wang YT  Huang LQ  Li SP 《Electrophoresis》2012,33(1):168-179
CE and CEC, due to their versatility and high efficiency, have attracted great interest in the analysis of phytochemicals in herbs and their preparations. Previously, we reviewed the analysis of phytochemical bioactive compounds by CE in 2006 (Electrophoresis 2006, 27, 4808-4819) or CEC in 2010 (Electrophoresis 2010, 31, 260-277). This review followed the previous studies and covered the literature published since 2006 for CE and 2009 for CEC (excluding those mentioned in the two previous reviews), which emphasized the development of CE and CEC techniques in phytochemical analysis. In addition, sample preparation and detection were also discussed.  相似文献   

20.
This review summarizes the variety of stationary phases that have been employed for capillary electrochromatography (CEC) separations. Currently, about 70% of reported CEC research utilizes C18 stationary phases designed for liquid chromatography, but an increasing number of new materials (e.g., ion-exchange phases, sol-gel approaches, organic polymer continuous beds) are under development for use in CEC. Novel aspects of these different materials are discussed including the ability to promote electroosmotic flow, phase selectivity and activity for basic solutes. In addition, new column designs (polymer continuous beds and silica-sol-gel monoliths) are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号